222 research outputs found

    Light Directs Zebrafish period2 Expression via Conserved D and E Boxes

    Get PDF
    A highly conserved promoter module in a vertebrate clock gene confers light-regulated gene expression

    Nano-scale architecture of blood-brain barrier tight-junctions

    Get PDF
    Tight junctions (TJs) between blood-brain barrier (BBB) endothelial cells construct a robust physical barrier, whose damage underlies BBB dysfunctions related to several neurodegenerative diseases. What makes these highly specialized BBB-TJs extremely restrictive remains unknown. Here, we use super-resolution microscopy (dSTORM) to uncover new structural and functional properties of BBB TJs. Focusing on three major components, Nano-scale resolution revealed sparse (occludin) vs. clustered (ZO1/claudin-5) molecular architecture. In mouse development, permeable TJs become first restrictive to large molecules, and only later to small molecules, with claudin-5 proteins arrangement compacting during this maturation process. Mechanistically, we reveal that ZO1 clustering is independent of claudin-5 in vivo. In contrast to accepted knowledge, we found that in the developmental context, total levels of claudin-5 inversely correlate with TJ functionality. Our super-resolution studies provide a unique perspective of BBB TJs and open new directions for understanding TJ functionality in biological barriers, ultimately enabling restoration in disease or modulation for drug delivery

    Comparison of Pressure Pain Threshold, Grip Strength, Dexterity and Touch Pressure of Dominant and Non-Dominant Hands within and Between Right- and Left-Handed Subjects

    Get PDF
    This study was done to evaluate differences in pressure pain threshold, grip strength, manual dexterity and touch pressure threshold in the dominant and non-dominant hands of right- and left-handed subjects, and to compare findings within and between these groups. Thirty-nine right-handed and twenty-one left-handed subjects participated in the study. Pressure pain threshold was assessed using a dolorimeter, grip strength was assessed with a hand-grip dynamometer, manual dexterity was evaluated using the VALPAR Component Work Sample-4 system, and touch pressure threshold was determined using Semmes Weinstein monofilaments. Results for the dominant and non-dominant hands were compared within and between the groups. In the right-handed subjects, the dominant hand was significantly faster with the VALPAR Component Work Sample-4, showed significantly greater grip strength, and had a significantly higher pressure pain threshold than the non-dominant hand. The corresponding results for the two hands were similar in the left-handed subjects. The study revealed asymmetrical manual performance in grip strength, manual dexterity and pressure pain threshold in right-handed subjects, but no such asymme-tries in left-handed subjects

    Huntington’s Disease iPSC-Derived Brain Microvascular Endothelial Cells Reveal WNT-Mediated Angiogenic and Blood-Brain Barrier Deficits

    Get PDF
    Brain microvascular endothelial cells (BMECs) are an essential component of the blood-brain barrier (BBB) that shields the brain against toxins and immune cells. While BBB dysfunction exists in neurological disorders, including Huntington's disease (HD), it is not known if BMECs themselves are functionally compromised to promote BBB dysfunction. Further, the underlying mechanisms of BBB dysfunction remain elusive given limitations with mouse models and post-mortem tissue to identify primary deficits. We undertook a transcriptome and functional analysis of human induced pluripotent stem cell (iPSC)-derived BMECs (iBMEC) from HD patients or unaffected controls. We demonstrate that HD iBMECs have intrinsic abnormalities in angiogenesis and barrier properties, as well as in signaling pathways governing these processes. Thus, our findings provide an iPSC-derived BBB model for a neurodegenerative disease and demonstrate autonomous neurovascular deficits that may underlie HD pathology with implications for therapeutics and drug delivery.American Heart Association (12PRE10410000)American Heart Association (CIRMTG2-01152)National Institutes of Health (U.S.) (NIHNS089076

    Transcriptomics reveal an integrative role for maternal thyroid hormones during zebrafish embryogenesis

    Get PDF
    Thyroid hormones (THs) are essential for embryonic brain development but the genetic mechanisms involved in the action of maternal THs (MTHs) are still largely unknown. As the basis for understanding the underlying genetic mechanisms of MTHs regulation we used an established zebrafish monocarboxylic acid transporter 8 (MCT8) knock-down model and characterised the transcriptome in 25hpf zebrafish embryos. Subsequent mapping of differentially expressed genes using Reactome pathway analysis together with in situ expression analysis and immunohistochemistry revealed the genetic networks and cells under MTHs regulation during zebrafish embryogenesis. We found 4,343 differentially expressed genes and the Reactome pathway analysis revealed that TH is involved in 1681 of these pathways. MTHs regulated the expression of core developmental pathways, such as NOTCH and WNT in a cell specific context. The cellular distribution of neural MTH-target genes demonstrated their cell specific action on neural stem cells and differentiated neuron classes. Taken together our data show that MTHs have a role in zebrafish neurogenesis and suggest they may be involved in cross talk between key pathways in neural development. Given that the observed MCT8 zebrafish knockdown phenotype resembles the symptoms in human patients with Allan-Herndon-Dudley syndrome our data open a window into understanding the genetics of this human congenital condition.Portuguese Fundacao para Ciencia e Tecnologia (FCT) [PTDC/EXPL/MARBIO/0430/2013]; CCMAR FCT Plurianual financing [UID/Multi/04326/2013]; FCT [SFRH/BD/111226/2015, SFRH/BD/108842/2015, SFRH/BPD/89889/2012]; FCT-IF Starting Grant [IF/01274/2014]info:eu-repo/semantics/publishedVersio

    Maternal thyroid hormones are essential for neural development in Zebrafish

    Get PDF
    Teleost eggs contain an abundant store of maternal thyroid hormones (THs), and early in zebrafish embryonic development, all the genes necessary for TH signaling are expressed. Nonetheless the function of THs in embryonic development remains elusive. To test the hypothesis that THs are fundamental for zebrafish embryonic development, an monocarboxilic transporter 8 (Mct8) knockdown strategy was deployed to prevent maternal TH uptake. Absence of maternal THs did not affect early specification of the neural epithelia but profoundly modified later dorsal specification of the brain and spinal cord as well as specific neuron differentiation. Maternal THs acted upstream of pax2a, pax7, and pax8 genes but downstream of shha and fgf8a signaling. The lack of inhibitory spinal cord interneurons and increased motoneurons in the mct8 morphants is consistent with their stiff axial body and impaired mobility. The mct8 mutations are associated with X-linked mental retardation in humans, and the cellular and molecular consequences of MCT8 knockdown during embryonic development in zebrafish provides new insight into the potential role of THs in this condition.Portuguese Science Foundation (FCT) [PTDC/MAR/115005/2009]; FCT [SFRH/BPD/66808/2009, SFRH/BPD/67008/2009, Pest-OE/EQB/LA0023/2013]info:eu-repo/semantics/publishedVersio

    An international study to explore the feasibility of collecting standardised outcome data for Complex Regional Pain Syndrome: Recommendations for an international clinical research registry

    Get PDF
    Introduction: Complex Regional Pain Syndrome (CRPS) is a persistent pain condition with low prevalence. Multi-centre collaborative research is needed to attain sufficient sample sizes for meaningful studies. This international observational study: (1) tested the feasibility and acceptability of collecting outcome data using an agreed core measurement set (2) tested and refined an electronic data management system to collect and manage the data. Methods: Adults with CRPS, meeting the Budapest diagnostic clinical criteria, were recruited to the study from 7 international research centres. After informed consent, a questionnaire comprising the core set outcome measures was completed: on paper at baseline (T1), and at 3 or 6 months (T2) using a paper or e-version. Participants and clinicians provided feedback on the data collection process. Clinicians completed the CRPS severity score at T1 and optionally, at T2. Ethical approval was obtained at each international centre. Results: Ninety-eight adults were recruited (female n=66; mean age 46.6 years, range 19-89), of whom 32% chose to receive the T2 questionnaire in an electronic format. Fifty-five participants completed both T1 and T2. Eighteen participants and nine clinicians provided feedback on their data collection experience. Conclusion: This study confirmed the questionnaire core outcome data are feasible and practicable to collect in clinical practice. The electronic data management system provided a robust means of collecting and managing the data across an international population. The findings have informed the final data collection tools and processes which will comprise the first international, clinical research registry and data bank for CRPS

    Thyrotroph Embryonic Factor Regulates Light-Induced Transcription of Repair Genes in Zebrafish Embryonic Cells

    Get PDF
    Numerous responses are triggered by light in the cell. How the light signal is detected and transduced into a cellular response is still an enigma. Each zebrafish cell has the capacity to directly detect light, making this organism particularly suitable for the study of light dependent transcription. To gain insight into the light signalling mechanism we identified genes that are activated by light exposure at an early embryonic stage, when specialised light sensing organs have not yet formed. We screened over 14,900 genes using micro-array GeneChips, and identified 19 light-induced genes that function primarily in light signalling, stress response, and DNA repair. Here we reveal that PAR Response Elements are present in all promoters of the light-induced genes, and demonstrate a pivotal role for the PAR bZip transcription factor Thyrotroph embryonic factor (Tef) in regulating the majority of light-induced genes. We show that tefβ transcription is directly regulated by light while transcription of tefα is under circadian clock control at later stages of development. These data leads us to propose their involvement in light-induced UV tolerance in the zebrafish embryo
    corecore