54 research outputs found

    Bcl-xL acts as an inhibitor of IP3R channels, thereby antagonizing Ca2+-driven apoptosis

    Get PDF
    Anti-apoptotic Bcl-2-family members not only act at mitochondria but also at the endoplasmic reticulum, where they impact Ca dynamics by controlling IP receptor (IPR) function. Current models propose distinct roles for Bcl-2 vs. Bcl-xL, with Bcl-2 inhibiting IPRs and preventing pro-apoptotic Ca release and Bcl-xL sensitizing IPRs to low [IP] and promoting pro-survival Ca oscillations. We here demonstrate that Bcl-xL too inhibits IPR-mediated Ca release by interacting with the same IPR regions as Bcl-2. Via in silico superposition, we previously found that the residue K87 of Bcl-xL spatially resembled K17 of Bcl-2, a residue critical for Bcl-2’s IPR-inhibitory properties. Mutagenesis of K87 in Bcl-xL impaired its binding to IPR and abrogated Bcl-xL’s inhibitory effect on IPRs. Single-channel recordings demonstrate that purified Bcl-xL, but not Bcl-xL, suppressed IPR single-channel openings stimulated by sub-maximal and threshold [IP]. Moreover, we demonstrate that Bcl-xL-mediated inhibition of IPRs contributes to its anti-apoptotic properties against Ca-driven apoptosis. Staurosporine (STS) elicits long-lasting Ca elevations in wild-type but not in IPR-knockout HeLa cells, sensitizing the former to STS treatment. Overexpression of Bcl-xL in wild-type HeLa cells suppressed STS-induced Ca signals and cell death, while Bcl-xL was much less effective in doing so. In the absence of IPRs, Bcl-xL and Bcl-xL were equally effective in suppressing STS-induced cell death. Finally, we demonstrate that endogenous Bcl-xL also suppress IPR activity in MDA-MB-231 breast cancer cells, whereby Bcl-xL knockdown augmented IPR-mediated Ca release and increased the sensitivity towards STS, without altering the ER Ca content. Hence, this study challenges the current paradigm of divergent functions for Bcl-2 and Bcl-xL in Ca-signaling modulation and reveals that, similarly to Bcl-2, Bcl-xL inhibits IPR-mediated Ca release and IPR-driven cell death. Our work further underpins that IPR inhibition is an integral part of Bcl-xL’s anti-apoptotic function.The work was supported by Grants from the Research Foundation—Flanders (FWO) (G.0901.18N), by the Research Council of the KU Leuven (OT14/101, C14/19/099, C14/19/101, and AKUL/19/34), the Interuniversity Attraction Poles Program (Belgian Science Policy; IAP-P7/13), the Central European Leuven Strategic Alliance (CELSA/18/040), and the Canadian Institutes Health Research (FDN143312). NR and HI are recipient of postdoctoral fellowships of the FWO; HI obtained a travel grant from the FWO to perform work in DIY’s laboratory. GB, JBP and DIY are part of the FWO Scientific Research Network CaSign (W0.019.17N). Work in DIY’s lab is supported by NIH (NIDCR) grant DE014756. DWA holds the Tier 1 Canada Research Chair in Membrane Biogenesis. The Switch laboratory was supported by the Flanders institute for Biotechnology (VIB), the University of Leuven, the Fund for Scientific Research Flanders (Hercules Foundation/FWO AKUL/15/34—G0H1716N). NL is funded by the Stichting Alzheimer Onderzoek (SAO-FRA 2020/0013) and is recipient of FWO postdoctoral fellowships (12P0919N and 12P0922N to NL)

    PepShell : visualization of conformational proteomics data

    No full text
    Proteins are dynamic molecules; they undergo crucial conformational changes induced by post-translational modifications and by binding of cofactors or other molecules. The characterization of these conformational changes and their relation to protein function is a central goal of structural biology. Unfortunately, most conventional methods to obtain structural information do not provide information on protein dynamics. Therefore, mass spectrometry-based approaches, such as limited proteolysis, hydrogen-deuterium exchange, and stable-isotope labeling, are frequently used to characterize protein conformation and dynamics, yet the interpretation of these data can be cumbersome and time consuming. Here, we present PepShell, a tool that allows interactive data analysis of mass spectrometry-based conformational proteomics studies by visualization of the identified peptides both at the sequence and structure levels. Moreover, PepShell allows the comparison of experiments under different conditions, including different proteolysis times or binding of the protein to different substrates or inhibitors

    Differences in antigenic sites and other functional regions between genotype A and G mumps virus surface proteins

    Get PDF
    The surface proteins of the mumps virus, the fusion protein (F) and haemagglutinin-neuraminidase (HN), are key factors in mumps pathogenesis and are important targets for the immune response during mumps virus infection. We compared the predicted amino acid sequences of the F and HN genes from Dutch mumps virus samples from the pre-vaccine era (1957–1982) with mumps virus genotype G strains (from 2004 onwards). Genotype G is the most frequently detected mumps genotype in recent outbreaks in vaccinated communities, especially in Western Europe, the USA and Japan. Amino acid differences between the Jeryl Lynn vaccine strains (genotype A) and genotype G strains were predominantly located in known B-cell epitopes and in N-linked glycosylation sites on the HN protein. There were eight variable amino acid positions specific to genotype A or genotype G sequences in five known B-cell epitopes of the HN protein. These differences may account for the reported antigenic differences between Jeryl Lynn and genotype G strains. We also found amino acid differences in and near sites on the HN protein that have been reported to play a role in mumps virus pathogenesis. These differences may contribute to the occurrence of genotype G outbreaks in vaccinated communities

    On the connection between real-world circumstances and online player behaviour: The case of EVE Online.

    Get PDF
    Games involving virtual worlds are popular in several segments of the population and societies. The online environment facilitates that players from different countries interact in a common virtual world. Virtual worlds involving social and economic interactions are particularly useful to test social and economic theories. Using data from EVE Online, a massive online multi-player game simulating a fantasy galaxy, we analyse the relation between the real-world context in which players live and their in-game behaviour at the country level. We find that in-game aggressiveness to non-player characters is positively related to real-world levels of aggressiveness as measured by the Global Peace Index and the Global Terrorist Index at the country level. The opposite is true for in-game aggressiveness towards other players, which seems to work as a safety valve for real-world player aggressiveness. The ability to make in-game friends is also positively related to real-world levels of aggressiveness in much the same way. In-game trading behaviour is dependent on the macro-economic environment where players live. The unemployment rate and exchange rate make players trade more efficiently and cautiously in-game. Overall, we find evidence that the real-world environment affects in-game behaviour, suggesting that virtual worlds can be used to experiment and test social and economic theories, and to infer real-world behaviour at the country level

    Flanders Architectural Yearbook 02-03

    No full text

    Ryanodine receptors are targeted by anti-apoptotic Bcl-XL involving its BH4 domain and Lys87 from its BH3 domain

    Get PDF
    Contains fulltext : 153911.pdf (publisher's version ) (Open Access)Anti-apoptotic B-cell lymphoma 2 (Bcl-2) family members target several intracellular Ca(2+)-transport systems. Bcl-2, via its N-terminal Bcl-2 homology (BH) 4 domain, inhibits both inositol 1,4,5-trisphosphate receptors (IP3Rs) and ryanodine receptors (RyRs), while Bcl-XL, likely independently of its BH4 domain, sensitizes IP3Rs. It remains elusive whether Bcl-XL can also target and modulate RyRs. Here, Bcl-XL co-immunoprecipitated with RyR3 expressed in HEK293 cells. Mammalian protein-protein interaction trap (MAPPIT) and surface plasmon resonance (SPR) showed that Bcl-XL bound to the central domain of RyR3 via its BH4 domain, although to a lesser extent compared to the BH4 domain of Bcl-2. Consistent with the ability of the BH4 domain of Bcl-XL to bind to RyRs, loading the BH4-Bcl-XL peptide into RyR3-overexpressing HEK293 cells or in rat hippocampal neurons suppressed RyR-mediated Ca(2+) release. In silico superposition of the 3D-structures of Bcl-2 and Bcl-XL indicated that Lys87 of the BH3 domain of Bcl-XL could be important for interacting with RyRs. In contrast to Bcl-XL, the Bcl-XL(K87D) mutant displayed lower binding affinity for RyR3 and a reduced inhibition of RyR-mediated Ca(2+) release. These data suggest that Bcl-XL binds to RyR channels via its BH4 domain, but also its BH3 domain, more specific Lys87, contributes to the interaction
    • …
    corecore