111 research outputs found

    Elucidating the degradation mechanism of the cathode catalyst of PEFCs by a combination of electrochemical methods and X-ray fluorescence spectroscopy

    Get PDF
    In this study, we report a methodology which enables the determination of the degradation mechanisms responsible for catalyst deterioration under different accelerated stress protocols (ASPs) by combining measurements of the electrochemical surface area (ECSA) and Pt content (by X-ray fluorescence).</p

    Human clade 2.3.4.4 A/H5N6 influenza virus lacks mammalian adaptation markers and does not transmit via the airborne route between ferrets

    Get PDF
    Since their emergence in 1997, A/H5N1 influenza viruses of the A/goose/ Guangdong/1/96 lineage have diversified in multiple genetic and antigenic clades upon continued circulation in poultry in several countries in Eurasia and Africa. Since 2009, reassortant viruses carrying clade 2.3.4.4 hemagglutinin (HA) and internal and neuraminidase (NA) genes of influenza A viruses of different avian origin have been detected, yielding various HA-NA combinations, such as A/H5N1, A/H5N2, A/H5N3, A/H5N5, A/H5N6, and A/H5N8. Previous studies reported on the low pathogenicity and lack of airborne transmission of A/H5N2 and A/H5N8 viruses in the ferret model. However, although A/H5N6 viruses are the only clade 2.3.4.4 viruses that crossed the species barrier and infected humans, the risk they pose for human health remains poorly characterized. Here, the characterization of A/H5N6 A/Guangzhou/39715/2014 virus in vitro and in ferrets is described. This A/H5N6 virus possessed high polymerase activity, mediated by the E627K substitution in the PB2 protein, which corresponds to only one biological trait out of the three that were previously shown to confer airborne transmissibility to A/H5N1 viruses between ferrets. This might explain its lack of airborne transmission between ferrets. After intranasal inoculation, A/H5N6 virus replicated to high titers in the respiratory tracts of ferrets and was excreted for at least 6 days. Moreover, A/H5N6 virus caused severe pneumonia in ferrets upon intratracheal inoculation. Thus, A/H5N6 virus causes a more severe disease in ferrets than previously investigated clade 2.3.4.4 viruses, but our results demonstrate that the risk from airborne spread is currently low

    Beyond climate envelopes: effects of weather on regional population trends in butterflies

    Get PDF
    Although the effects of climate change on biodiversity are increasingly evident by the shifts in species ranges across taxonomical groups, the underlying mechanisms affecting individual species are still poorly understood. The power of climate envelopes to predict future ranges has been seriously questioned in recent studies. Amongst others, an improved understanding of the effects of current weather on population trends is required. We analysed the relation between butterfly abundance and the weather experienced during the life cycle for successive years using data collected within the framework of the Dutch Butterfly Monitoring Scheme for 40 species over a 15-year period and corresponding climate data. Both average and extreme temperature and precipitation events were identified, and multiple regression was applied to explain annual changes in population indices. Significant weather effects were obtained for 39 species, with the most frequent effects associated with temperature. However, positive density-dependence suggested climatic independent trends in at least 12 species. Validation of the short-term predictions revealed a good potential for climate-based predictions of population trends in 20 species. Nevertheless, data from the warm and dry year of 2003 indicate that negative effects of climatic extremes are generally underestimated for habitat specialists in drought-susceptible habitats, whereas generalists remain unaffected. Further climatic warming is expected to influence the trends of 13 species, leading to an improvement for nine species, but a continued decline in the majority of species. Expectations from climate envelope models overestimate the positive effects of climate change in northwestern Europe. Our results underline the challenge to include population trends in predicting range shifts in response to climate change

    Energy monitoring as a practice: Investigating use of the iMeasure online energy feedback tool

    Get PDF
    Energy feedback is a prominent feature of policy initiatives aimed at reducing domestic energy consumption. However little research has been conducted on the phenomenon of energy monitoring itself, with most studies looking at whether, and how, feedback impacts on energy conservation. This paper aims to address that gap from a practice theory perspective. In particular we: set out the difference between energy feedback and energy monitoring; define the practice of energy monitoring; and investigate the rationale and qualitative experiences of those performing energy monitoring. An online energy feedback tool (‘iMeasure’) was the basis of the case study. A netnographic analysis of online discussion about the tool informed complementary in-depth interviews with ten current/former iMeasure users. We found energy monitoring to be a distinct practice that focuses on measuring and identifying energy use trends and requires specific know-how to perform. However, its connections to other household practices were weak and, for those who did perform monitoring, there was no guarantee that this practice would reorganise other practices to induce household energy saving. In fact, monitoring often followed decisions to make energy-related changes, rather than prompting them. We conclude that policy expectations need to be reframed in terms of how energy monitoring tools are used

    Higher thyrotropin leads to unfavorable lipid profile and somewhat higher cardiovascular disease risk: evidence from multi-cohort Mendelian randomization and metabolomic profiling.

    Get PDF
    BACKGROUND: Observational studies suggest interconnections between thyroid status, metabolism, and risk of coronary artery disease (CAD), but causality remains to be proven. The present study aimed to investigate the potential causal relationship between thyroid status and cardiovascular disease and to characterize the metabolomic profile associated with thyroid status. METHODS: Multi-cohort two-sample Mendelian randomization (MR) was performed utilizing genome-wide significant variants as instruments for standardized thyrotropin (TSH) and free thyroxine (fT4) within the reference range. Associations between TSH and fT4 and metabolic profile were investigated in a two-stage manner: associations between TSH and fT4 and the full panel of 161 metabolomic markers were first assessed hypothesis-free, then directional consistency was assessed through Mendelian randomization, another metabolic profile platform, and in individuals with biochemically defined thyroid dysfunction. RESULTS: Circulating TSH was associated with 52/161 metabolomic markers, and fT4 levels were associated with 21/161 metabolomic markers among 9432 euthyroid individuals (median age varied from 23.0 to 75.4 years, 54.5% women). Positive associations between circulating TSH levels and concentrations of very low-density lipoprotein subclasses and components, triglycerides, and triglyceride content of lipoproteins were directionally consistent across the multivariable regression, MR, metabolomic platforms, and for individuals with hypo- and hyperthyroidism. Associations with fT4 levels inversely reflected those observed with TSH. Among 91,810 CAD cases and 656,091 controls of European ancestry, per 1-SD increase of genetically determined TSH concentration risk of CAD increased slightly, but not significantly, with an OR of 1.03 (95% CI 0.99-1.07; p value 0.16), whereas higher genetically determined fT4 levels were not associated with CAD risk (OR 1.00 per SD increase of fT4; 95% CI 0.96-1.04; p value 0.59). CONCLUSIONS: Lower thyroid status leads to an unfavorable lipid profile and a somewhat increased cardiovascular disease risk

    Human Clade 2.3.4.4 A/H5N6 Influenza Virus Lacks Mammalian Adaptation Markers and Does Not Transmit via the Airborne Route between Ferrets

    Get PDF
    Since their emergence in 1997, A/H5N1 influenza viruses of the A/goose/Guangdong/1/96 lineage have diversified in multiple genetic and antigenic clades upon continued circulation in poultry in several countries in Eurasia and Africa. Since 2009, reassortant viruses carrying clade 2.3.4.4 hemagglutinin (HA) and internal and neuraminidase (NA) genes of influenza A viruses of different avian origin have been detected, yielding various HA-NA combinations, such as A/H5N1, A/H5N2, A/H5N3, A/H5N5, A/H5N6, and A/H5N8. Previous studies reported on the low pathogenicity and lack of airborne transmission of A/H5N2 and A/H5N8 viruses in the ferret model. However, although A/H5N6 viruses are the only clade 2.3.4.4 viruses that crossed the species barrier and infected humans, the risk they pose for human health remains poorly characterized. Here, the characterization of A/H5N6 A/Guangzhou/39715/2014 virus in vitro and in ferrets is described. This A/H5N6 virus possessed high polymerase activity, mediated by the E627K substitution in the PB2 protein, which corresponds to only one biological trait out of the three that were previously shown to confer airborne transmissibility to A/H5N1 viruses between ferrets. This might explain its lack of airborne transmission between ferrets. After intranasal inoculation, A/H5N6 virus replicated to high titers in the respiratory tracts of ferrets and was excreted for at least 6 days. Moreover, A/H5N6 virus caused severe pneumonia in ferrets upon intratracheal inoculation. Thus, A/H5N6 virus causes a more severe disease in ferrets than previously investigated clade 2.3.4.4 viruses, but our results demonstrate that the risk from airborne spread is currently low. IMPORTANCE Avian influenza A viruses are a threat to human health, as they cross the species barrier and infect humans occasionally, often with severe outcome. The antigenic and genetic diversity of A/H5 viruses from the A/goose/Guangdong/1/96 lineage is increasing, due to continued circulation and reassortment in poultry, posing a constant risk for public health and requiring regular risk assessments. Here we performed an in-depth characterization of the properties of the newly emerged zoonotic A/H5N6 virus in vitro and in ferrets. The lack of airborne transmission in the ferret model indicates that A/H5N6 virus does not pose a direct public health threat, despite the fact that it can replicate to high titers throughout the respiratory tracts of ferrets and cause more severe disease than other clade 2.3.4.4 viruses.published_or_final_versio

    Domestication of Campylobacter jejuni NCTC 11168

    Get PDF
    Reference and type strains of well-known bacteria have been a cornerstone of microbiology research for decades. The sharing of well-characterized isolates among laboratories has run in parallel with research efforts and enhanced the reproducibility of experiments, leading to a wealth of knowledge about trait variation in different species and the underlying genetics. Campylobacter jejuni strain NCTC 11168, deposited at the National Collection of Type Cultures in 1977, has been adopted widely as a reference strain by researchers worldwide and was the first Campylobacter for which the complete genome was published (in 2000). In this study, we collected 23 C . jejuni NCTC 11168 reference isolates from laboratories across the UK and compared variation in simple laboratory phenotypes with genetic variation in sequenced genomes. Putatively identical isolates, identified previously to have aberrant phenotypes, varied by up to 281 SNPs (in 15 genes) compared to the most recent reference strain. Isolates also display considerable phenotype variation in motility, morphology, growth at 37 °C, invasion of chicken and human cell lines, and susceptibility to ampicillin. This study provides evidence of ongoing evolutionary change among C. jejuni isolates as they are cultured in different laboratories and highlights the need for careful consideration of genetic variation within laboratory reference strains. This article contains data hosted by Microreact

    The trans-ancestral genomic architecture of glycemic traits

    Get PDF
    Glycemic traits are used to diagnose and monitor type 2 diabetes and cardiometabolic health. To date, most genetic studies of glycemic traits have focused on individuals of European ancestry. Here we aggregated genome-wide association studies comprising up to 281,416 individuals without diabetes (30% non-European ancestry) for whom fasting glucose, 2-h glucose after an oral glucose challenge, glycated hemoglobin and fasting insulin data were available. Trans-ancestry and single-ancestry meta-analyses identified 242 loci (99 novel; P < 5 x 10(-8)), 80% of which had no significant evidence of between-ancestry heterogeneity. Analyses restricted to individuals of European ancestry with equivalent sample size would have led to 24 fewer new loci. Compared with single-ancestry analyses, equivalent-sized trans-ancestry fine-mapping reduced the number of estimated variants in 99% credible sets by a median of 37.5%. Genomic-feature, gene-expression and gene-set analyses revealed distinct biological signatures for each trait, highlighting different underlying biological pathways. Our results increase our understanding of diabetes pathophysiology by using trans-ancestry studies for improved power and resolution. A trans-ancestry meta-analysis of GWAS of glycemic traits in up to 281,416 individuals identifies 99 novel loci, of which one quarter was found due to the multi-ancestry approach, which also improves fine-mapping of credible variant sets
    corecore