24 research outputs found

    Fronts dynamics in the presence of spatio-temporal structured noises

    Get PDF
    Front dynamics modeled by a reaction-diffusion equation are studied under the influence of spatio-temporal structured noises. An effective deterministic model is analytical derived where the noise parameters, intensity, correlation time and correlation length appear explicitely. The different effects of these parameters are discussed for the Ginzburg-Landau and Schl\"ogl models. We obtain an analytical expression for the front velocity as a function of the noise parameters. Numerical simulations results are in a good agreement with the theoretical predictions.Comment: 11 pages, 6 figures; REVTEX; to be published in Phys.Rev.E, july 200

    New methods to measure phase transition strength

    Get PDF
    A recently developed technique to determine the order and strength of phase transitions by extracting the density of partition function zeroes (a continuous function) from finite-size systems (a discrete data set) is generalized to systems for which (i) some or all of the zeroes occur in degenerate sets and/or (ii) they are not confined to a singular line in the complex plane. The technique is demonstrated by application to the case of free Wilson fermions.Comment: 3 pages, 2 figures, Lattice2002(spin

    ERROR PROPAGATION IN EXTENDED CHAOTIC SYSTEMS

    Get PDF
    A strong analogy is found between the evolution of localized disturbances in extended chaotic systems and the propagation of fronts separating different phases. A condition for the evolution to be controlled by nonlinear mechanisms is derived on the basis of this relationship. An approximate expression for the nonlinear velocity is also determined by extending the concept of Lyapunov exponent to growth rate of finite perturbations.Comment: Tex file without figures- Figures and text in post-script available via anonymous ftp at ftp://wpts0.physik.uni-wuppertal.de/pub/torcini/jpa_le

    Stochastic differential equations for non-linear hydrodynamics

    Full text link
    We formulate the stochastic differential equations for non-linear hydrodynamic fluctuations. The equations incorporate the random forces through a random stress tensor and random heat flux as in the Landau and Lifshitz theory. However, the equations are non-linear and the random forces are non-Gaussian. We provide explicit expressions for these random quantities in terms of the well-defined increments of the Wienner process.Comment: 11 pages, submitted to Phys. Rev.

    Domain Walls in Non-Equilibrium Systems and the Emergence of Persistent Patterns

    Full text link
    Domain walls in equilibrium phase transitions propagate in a preferred direction so as to minimize the free energy of the system. As a result, initial spatio-temporal patterns ultimately decay toward uniform states. The absence of a variational principle far from equilibrium allows the coexistence of domain walls propagating in any direction. As a consequence, *persistent* patterns may emerge. We study this mechanism of pattern formation using a non-variational extension of Landau's model for second order phase transitions. PACS numbers: 05.70.Fh, 42.65.Pc, 47.20.Ky, 82.20MjComment: 12 pages LaTeX, 5 postscript figures To appear in Phys. Rev.

    Phase Transition Strength through Densities of General Distributions of Zeroes

    Get PDF
    A recently developed technique for the determination of the density of partition function zeroes using data coming from finite-size systems is extended to deal with cases where the zeroes are not restricted to a curve in the complex plane and/or come in degenerate sets. The efficacy of the approach is demonstrated by application to a number of models for which these features are manifest and the zeroes are readily calculable.Comment: 16 pages, 12 figure

    The Julia sets and complex singularities in hierarchical Ising models

    Full text link
    We study the analytical continuation in the complex plane of free energy of the Ising model on diamond-like hierarchical lattices. It is known that the singularities of free energy of this model lie on the Julia set of some rational endomorphism ff related to the action of the Migdal-Kadanoff renorm-group. We study the asymptotics of free energy when temperature goes along hyperbolic geodesics to the boundary of an attractive basin of ff. We prove that for almost all (with respect to the harmonic measure) geodesics the complex critical exponent is common, and compute it

    The diffusion coefficient of propagating fronts with multiplicative noise

    No full text
    Recent studies have shown that in the presence of noise, both fronts propagating into a metastable state and so-called pushed fronts propagating into an unstable state, exhibit diffusive wandering about the average position. In this paper, we derive an expression for the effective diffusion coefficient of such fronts, which was motivated before on the basis of a multiple scale ansatz. Our systematic derivation is based on the decomposition of the fluctuating front into a suitably positioned average profile plus fluctuating eigenmodes of the stability operator. While the fluctuations of the front position in this particular decomposition are a Wiener process on all time scales, the fluctuations about the time-averaged front profile relax exponentially
    corecore