761 research outputs found

    Toward nonlinear stability of sources via a modified Burgers equation

    Full text link
    Coherent structures are solutions to reaction-diffusion systems that are time-periodic in an appropriate moving frame and spatially asymptotic at x=±∞x=\pm\infty to spatially periodic travelling waves. This paper is concerned with sources which are coherent structures for which the group velocities in the far field point away from the core. Sources actively select wave numbers and therefore often organize the overall dynamics in a spatially extended system. Determining their nonlinear stability properties is challenging as localized perturbations may lead to a non-localized response even on the linear level due to the outward transport. Using a modified Burgers equation as a model problem that captures some of the essential features of coherent structures, we show how this phenomenon can be analysed and nonlinear stability be established in this simpler context.Comment: revised version with some typos fixe

    Perturbations of embedded eigenvalues for the planar bilaplacian

    Get PDF
    Operators on unbounded domains may acquire eigenvalues that are embedded in the essential spectrum. Determining the fate of these embedded eigenvalues under small perturbations of the underlying operator is a challenging task, and the persistence properties of such eigenvalues is linked intimately to the multiplicity of the essential spectrum. In this paper, we consider the planar bilaplacian with potential and show that the set of potentials for which an embedded eigenvalue persists is locally an infinite-dimensional manifold with infinite codimension in an appropriate space of potentials

    Nonlinear stability of source defects in oscillatory media

    Full text link
    In this paper, we prove the nonlinear stability under localized perturbations of spectrally stable time-periodic source defects of reaction-diffusion systems. Consisting of a core that emits periodic wave trains to each side, source defects are important as organizing centers of more complicated flows. Our analysis uses spatial dynamics combined with an instantaneous phase-tracking technique to obtain detailed pointwise estimates describing perturbations to lowest order as a phase-shift radiating outward at a linear rate plus a pair of localized approximately Gaussian excitations along the phase-shift boundaries; we show that in the wake of these outgoing waves the perturbed solution converges time-exponentially to a space-time translate of the original source pattern.https://arxiv.org/abs/1802.07676First author draf

    Nonlinear stability of source defects in the complex Ginzburg-Landau equation

    Full text link
    In an appropriate moving coordinate frame, source defects are time-periodic solutions to reaction-diffusion equations that are spatially asymptotic to spatially periodic wave trains whose group velocities point away from the core of the defect. In this paper, we rigorously establish nonlinear stability of spectrally stable source defects in the complex Ginzburg-Landau equation. Due to the outward transport at the far field, localized perturbations may lead to a highly non-localized response even on the linear level. To overcome this, we first investigate in detail the dynamics of the solution to the linearized equation. This allows us to determine an approximate solution that satisfies the full equation up to and including quadratic terms in the nonlinearity. This approximation utilizes the fact that the non-localized phase response, resulting from the embedded zero eigenvalues, can be captured, to leading order, by the nonlinear Burgers equation. The analysis is completed by obtaining detailed estimates for the resolvent kernel and pointwise estimates for the Green's function, which allow one to close a nonlinear iteration scheme.Comment: 53 pages, 5 figure

    Stability of N-fronts bifurcating from a twisted heteroclinic loop and an application to the FitzHugh-Nagumo equation

    Get PDF
    In this article existence and stability of N-front travelling wave solutions of partial differential equations on the real line is investigated. The N-fronts considered here arise as heteroclinic orbits bifurcating from a twisted heteroclinic loop in the underlying ordinary differential equation describing travelling wave solutions. It is proved that the N-front solutions are linearly stable provided the fronts building the twisted heteroclinic loop are linearly stable. The result is applied to travelling waves arising in the FitzHugh-Nagumo equation

    Instability of localised buckling modes in a one-dimensional strut model

    Get PDF
    Stability of localised equilibria arising in a fourth-order partial differential equation modelling struts is investigated. It was shown in Buffoni, Champneys & Toland (1996) that the model exhibits many multi-modal buckling states bifurcating from a primary buckling mode. In this article, using analytical and numerical techniques, the primary mode is shown to be unstable under dead loading in a large range of parameter values, while is likely to be stable under rigid loading for small axial loads. Furthermore, for general reversible or Hamiltonian systems, stability of the multi-modal solutions is established assuming stability of the primary state. As this hypothesis is not satisfied for the buckling mode arising in the strut model, any multi-modal buckling state will be unstable for both loading devices

    On the Structure of Spectra of Modulated Travelling Waves

    Get PDF

    The large core limit of spiral waves in excitable media: A numerical approach

    Full text link
    We modify the freezing method introduced by Beyn & Thuemmler, 2004, for analyzing rigidly rotating spiral waves in excitable media. The proposed method is designed to stably determine the rotation frequency and the core radius of rotating spirals, as well as the approximate shape of spiral waves in unbounded domains. In particular, we introduce spiral wave boundary conditions based on geometric approximations of spiral wave solutions by Archimedean spirals and by involutes of circles. We further propose a simple implementation of boundary conditions for the case when the inhibitor is non-diffusive, a case which had previously caused spurious oscillations. We then utilize the method to numerically analyze the large core limit. The proposed method allows us to investigate the case close to criticality where spiral waves acquire infinite core radius and zero rotation frequency, before they begin to develop into retracting fingers. We confirm the linear scaling regime of a drift bifurcation for the rotation frequency and the core radius of spiral wave solutions close to criticality. This regime is unattainable with conventional numerical methods.Comment: 32 pages, 17 figures, as accepted by SIAM Journal on Applied Dynamical Systems on 20/03/1
    • …
    corecore