5,518 research outputs found
Unexplained massive subdural haematoma in a newborn delivered by elective caesarian section: a case report
Symptomatic subdural haematoma (SDH) in term infants typically occur following traumatic vaginal delivery. Emergency Caesarean Section (EmC/S) carried out after failed attempts at vaginal delivery may also be complicated by symptomatic SDH but spontaneous symptomatic SDH complicating Elective Caesarean Section (ElC/S) is a rarity. We describe a case of massive SDH in a term baby delivered by Elective C/S in the absence of risk factors for intracranial haemorrhage. The aim of this presentation is to highlight the significance of acute subdural haematoma in the diagnostic work up of neonates presenting with acute neurologic symptoms in the absence of traumatic delivery.Key words: Symptomatic subdural haematoma, Caesarean section, severe birth injuries, neonatal seizur
Predicting selective drug targets in cancer through metabolic networks
The authors develop a genome-scale model of cancer metabolism and use it to predict genes that are essential for cancer cell growth. An array of target combinations are then identified that could potentially provide novel selective treatments for specific cancers
Holographic Geometry of Entanglement Renormalization in Quantum Field Theories
We study a conjectured connection between the AdS/CFT and a real-space
quantum renormalization group scheme, the multi-scale entanglement
renormalization ansatz (MERA). By making a close contact with the holographic
formula of the entanglement entropy, we propose a general definition of the
metric in the MERA in the extra holographic direction, which is formulated
purely in terms of quantum field theoretical data. Using the continuum version
of the MERA (cMERA), we calculate this emergent holographic metric explicitly
for free scalar boson and free fermions theories, and check that the metric so
computed has the properties expected from AdS/CFT. We also discuss the cMERA in
a time-dependent background induced by quantum quench and estimate its
corresponding metric.Comment: 42pages, 9figures, reference added, minor chang
Determinant representations of scalar products for the open XXZ chain with non-diagonal boundary terms
With the help of the F-basis provided by the Drinfeld twist or factorizing
F-matrix for the open XXZ spin chain with non-diagonal boundary terms, we
obtain the determinant representations of the scalar products of Bethe states
of the model.Comment: Latex file, 28 pages, based on the talk given by W. -L. Yang at
Statphys 24, Cairns, Australia, 19-23 July, 201
Lifshitz spacetimes from AdS null and cosmological solutions
We describe solutions of 10-dimensional supergravity comprising null
deformations of with a scalar field, which have
Lifshitz symmetries. The bulk Lifshitz geometry in 3+1-dimensions arises by
dimensional reduction of these solutions. The dual field theory in this case is
a deformation of the N=4 super Yang-Mills theory. We discuss the holographic
2-point function of operators dual to bulk scalars. We further describe
time-dependent (cosmological) solutions which have anisotropic Lifshitz scaling
symmetries. We also discuss deformations of in 11-dimensional
supergravity, which are somewhat similar to the solutions above. In some cases
here, we expect the field theory duals to be deformations of the Chern-Simons
theories on M2-branes stacked at singularities.Comment: Latex, 29pgs, v3. references, minor clarifications (subsection on
Lifshitz geometry seen by scalar probes) added, to appear in JHE
The 10th Biennial Hatter Cardiovascular Institute workshop: cellular protectionâevaluating new directions in the setting of myocardial infarction, ischaemic stroke, and cardio-oncology
Due to its poor capacity for regeneration, the heart is particularly sensitive to the loss of contractile cardiomyocytes. The onslaught of damage caused by ischaemia and reperfusion, occurring during an acute myocardial infarction and the subsequent reperfusion therapy, can wipe out upwards of a billion cardiomyocytes. A similar program of cell death can cause the irreversible loss of neurons in ischaemic stroke. Similar pathways of lethal cell injury can contribute to other pathologies such as left ventricular dysfunction and heart failure caused by cancer therapy. Consequently, strategies designed to protect the heart from lethal cell injury have the potential to be applicable across all three pathologies. The investigators meeting at the 10th Hatter Cardiovascular Institute workshop examined the parallels between ST-segment elevation myocardial infarction (STEMI), ischaemic stroke, and other pathologies that cause the loss of cardiomyocytes including cancer therapeutic cardiotoxicity. They examined the prospects for protection by remote ischaemic conditioning (RIC) in each scenario, and evaluated impasses and novel opportunities for cellular protection, with the future landscape for RIC in the clinical setting to be determined by the outcome of the large ERIC-PPCI/CONDI2 study. It was agreed that the way forward must include measures to improve experimental methodologies, such that they better reflect the clinical scenario and to judiciously select combinations of therapies targeting specific pathways of cellular death and injury
The TLR signalling adaptor TRIF/TICAM-1 has an N-terminal helical domain with structural similarity to IFIT proteins
TRIF/TICAM-1 (TIR domain-containing adaptor inducing interferon-beta/TIR domain-containing adaptor molecule 1) is the adaptor protein in the Toll-like receptor (TLR) 3 and 4 signalling pathway that leads to the production of type 1 interferons and cytokines. The signalling involves TIR (Toll/interleukin-1 receptor) domain-dependent TRIF oligomerization. A protease-resistant N-terminal region is believed to be involved in self-regulation of TRIF by interacting with its TIR domain. Here, the structural and functional characterization of the N-terminal domain of TRIF (TRIF-NTD) comprising residues 1-153 is reported. The 2.22 angstrom resolution crystal structure was solved by single-wavelength anomalous diffraction (SAD) using selenomethionine-labelled crystals of TRIF-NTD containing two additional introduced Met residues (TRIF-NTDA66M/L113M). The structure consists of eight antiparallel helices that can be divided into two subdomains, and the overall fold shares similarity to the interferon-induced protein with tetratricopeptide repeats (IFIT) family of proteins, which are involved in both the recognition of viral RNA and modulation of innate immune signalling. Analysis of TRIF-NTD surface features and the mapping of sequence conservation onto the structure suggest several possible binding sites involved in either TRIF auto-regulation or interaction with other signalling molecules or ligands. TRIF-NTD suppresses TRIF-mediated activation of the interferon-beta promoter, as well as NF-kappa B-dependent reporter-gene activity. These findings thus identify opportunities for the selective targeting of TLR3- and TLR4-mediated inflammation
Non-A Hepatitis B Virus Genotypes in Antenatal Clinics, United Kingdom
Serostatus for viral e antigen is no longer accurate for inferring potential infectivity of pregnant virus carriers
The Appearance and Modulation of Osteocyte Marker Expression during Calcification of Vascular Smooth Muscle Cells
Vascular calcification is an indicator of elevated cardiovascular risk. Vascular smooth muscle cells (VSMCs), the predominant cell type involved in medial vascular calcification, can undergo phenotypic transition to both osteoblastic and chondrocytic cells within a calcifying environment.In the present study, using in vitro VSMC calcification studies in conjunction with ex vivo analyses of a mouse model of medial calcification, we show that vascular calcification is also associated with the expression of osteocyte phenotype markers. As controls, the terminal differentiation of murine calvarial osteoblasts into osteocytes was induced in vitro in the presence of calcifying medium (containing Ă-glycerophosphate and ascorbic acid), as determined by increased expression of the osteocyte markers DMP-1, E11 and sclerostin. Culture of murine aortic VSMCs under identical conditions confirmed that the calcification of these cells can also be induced in similar calcifying medium. Calcified VSMCs had increased alkaline phosphatase activity and PiT-1 expression, which are recognized markers of vascular calcification. Expression of DMP-1, E11 and sclerostin was up-regulated during VSMC calcification in vitro. Increased protein expression of E11, an early osteocyte marker, and sclerostin, expressed by more mature osteocytes was also observed in the calcified media of Enpp1(-/-) mouse aortic tissue.This study has demonstrated the up-regulation of key osteocytic molecules during the vascular calcification process. A fuller understanding of the functional role of osteocyte formation and specifically sclerostin and E11 expression in the vascular calcification process may identify novel potential therapeutic strategies for clinical intervention
Circuit dissection of the role of somatostatin in itch and pain
Stimuli that elicit itch are detected by sensory neurons that innervate the skin. This information is processed by the spinal cord; however, the way in which this occurs is still poorly understood. Here we investigated the neuronal pathways for itch neurotransmission, particularly the contribution of the neuropeptide somatostatin. We find that in the periphery, somatostatin is exclusively expressed in Nppb+ neurons, and we demonstrate that Nppb+somatostatin+ cells function as pruriceptors. Employing chemogenetics, pharmacology and cell-specific ablation methods, we demonstrate that somatostatin potentiates itch by inhibiting inhibitory dynorphin neurons, which results in disinhibition of GRPR+ neurons. Furthermore, elimination of somatostatin from primary afferents and/or from spinal interneurons demonstrates differential involvement of the peptide released from these sources in itch and pain. Our results define the neural circuit underlying somatostatin-induced itch and characterize a contrasting antinociceptive role for the peptide
- âŠ