1,822 research outputs found

    Multiplet features and magnetic properties of Fe on Cu(111): From single atoms to small clusters

    Get PDF
    The observation of sharp atomiclike multiplet features is unexpected for individual 3d atoms adsorbed on transition-metal surfaces. However, we show by means of x-ray absorption spectroscopy and x-ray magnetic circular dichroism that individual Fe atoms on Cu(111) exhibit such features. They are reminiscent of a low degree of hybridization, similar to 3d atoms adsorbed on alkali-metal surfaces. We determine the spin, orbital, and total magnetic moments, as well as magnetic anisotropy energy for the individual Fe atoms and for small Fe clusters that we form by increasing the coverage. The multiplet features are smoothened and the orbital moment rapidly decreases with increasing cluster size. For Fe monomers, comparison with density functional theory and multiplet calculations reveals a d(7) electronic configuration, owing to the transfer of one electron from the 4s to the 3d states

    Two-Orbital Kondo Screening in a Self-Assembled Metal Organic Complex

    Get PDF
    Iron atoms adsorbed on a Cu(111) surface and buried under polyphenyl dicarbonitrile molecules exhibit strongly spatial anisotropic Kondo features with directionally dependent Kondo temperatures and line shapes, as evidenced by scanning tunneling spectroscopy. First-principles calculations find nearly full polarization for the half-filled Fe 3d(xz) and 3d(yz) orbitals, which therefore can give rise to Kondo screening with the experimentally observed directional dependence and distinct Kondo temperatures. X-ray absorption spectroscopy and X-ray magnetic circular dichroism measurements confirm that the spin in both channels is effectively Kondo-screened. At ideal Fe coverage, these two-orbital Kondo impurities are arranged in a self-assembled honeycomb superlattice

    Slow magnetic relaxation of Dy adatoms with in-plane magnetic anisotropy on a two-dimensional electron gas

    Get PDF
    We report on the magnetic properties of Dy atoms adsorbed on the (001) surface of SrTiO3. X-ray magnetic circular dichroism reveals slow relaxation of the Dy magnetization on a time scale of about 800 s at 2.5 K, unusually associated with an easy-plane magnetic anisotropy. We attribute these properties to Dy atoms occupying hollow adsorption sites on the TiO2-terminated surface. Conversely, Ho atoms adsorbed on the same surface show paramagnetic behavior down to 2.5 K. With the help of atomic multiplet simulations and first-principles calculations, we establish that Dy populates also the top-O and bridge sites on the coexisting SrO-terminated surface. A simple magnetization relaxation model predicts these two sites to have an even longer magnetization lifetime than the hollow site. Moreover, the adsorption of Dy on the insulating SrTiO3 crystal leads, regardless of the surface termination, to the formation of a spin-polarized two-dimensional electron gas of Ti 3dxy character, together with an antiferromagnetic Dy-Ti coupling. Our findings support the feasibility of tuning the magnetic properties of the rare-earth atoms by acting on the substrate electronic gas with electric fields

    Epidemiological patterns of asbestos exposure and spatial clusters of incident cases of malignant mesothelioma from the Italian national registry

    Get PDF
    Abstract BACKGROUND: Previous ecological spatial studies of malignant mesothelioma cases, mostly based on mortality data, lack reliable data on individual exposure to asbestos, thus failing to assess the contribution of different occupational and environmental sources in the determination of risk excess in specific areas. This study aims to identify territorial clusters of malignant mesothelioma through a Bayesian spatial analysis and to characterize them by the integrated use of asbestos exposure information retrieved from the Italian national mesothelioma registry (ReNaM). METHODS: In the period 1993 to 2008, 15,322 incident cases of all-site malignant mesothelioma were recorded and 11,852 occupational, residential and familial histories were obtained by individual interviews. Observed cases were assigned to the municipality of residence at the time of diagnosis and compared to those expected based on the age-specific rates of the respective geographical area. A spatial cluster analysis was performed for each area applying a Bayesian hierarchical model. Information about modalities and economic sectors of asbestos exposure was analyzed for each cluster. RESULTS: Thirty-two clusters of malignant mesothelioma were identified and characterized using the exposure data. Asbestos cement manufacturing industries and shipbuilding and repair facilities represented the main sources of asbestos exposure, but a major contribution to asbestos exposure was also provided by sectors with no direct use of asbestos, such as non-asbestos textile industries, metal engineering and construction. A high proportion of cases with environmental exposure was found in clusters where asbestos cement plants were located or a natural source of asbestos (or asbestos-like) fibers was identifiable. Differences in type and sources of exposure can also explain the varying percentage of cases occurring in women among clusters. CONCLUSIONS: Our study demonstrates shared exposure patterns in territorial clusters of malignant mesothelioma due to single or multiple industrial sources, with major implications for public health policies, health surveillance, compensation procedures and site remediation programs

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio

    Fucans, but Not Fucomannoglucuronans, Determine the Biological Activities of Sulfated Polysaccharides from Laminaria saccharina Brown Seaweed

    Get PDF
    Sulfated polysaccharides from Laminaria saccharina (new name: Saccharina latissima) brown seaweed show promising activity for the treatment of inflammation, thrombosis, and cancer; yet the molecular mechanisms underlying these properties remain poorly understood. The aim of this work was to characterize, using in vitro and in vivo strategies, the anti-inflammatory, anti-coagulant, anti-angiogenic, and anti-tumor activities of two main sulfated polysaccharide fractions obtained from L. saccharina: a) L.s.-1.0 fraction mainly consisting of O-sulfated mannoglucuronofucans and b) L.s.-1.25 fraction mainly composed of sulfated fucans. Both fractions inhibited leukocyte recruitment in a model of inflammation in rats, although L.s.-1.25 appeared to be more active than L.s.-1.0. Also, these fractions inhibited neutrophil adhesion to platelets under flow. Only fraction L.s.-1.25, but not L.s.-1.0, displayed anticoagulant activity as measured by the activated partial thromboplastin time. Investigation of these fractions in angiogenesis settings revealed that only L.s.-1.25 strongly inhibited fetal bovine serum (FBS) induced in vitro tubulogenesis. This effect correlated with a reduction in plasminogen activator inhibitor-1 (PAI-1) levels in L.s.-1.25-treated endothelial cells. Furthermore, only parent sulfated polysaccharides from L. saccharina (L.s.-P) and its fraction L.s.-1.25 were powerful inhibitors of basic fibroblast growth factor (bFGF) induced pathways. Consistently, the L.s.-1.25 fraction as well as L.s.-P successfully interfered with fibroblast binding to human bFGF. The incorporation of L.s.-P or L.s.-1.25, but not L.s.-1.0 into Matrigel plugs containing melanoma cells induced a significant reduction in hemoglobin content as well in the frequency of tumor-associated blood vessels. Moreover, i.p. administrations of L.s.-1.25, as well as L.s.-P, but not L.s.-1.0, resulted in a significant reduction of tumor growth when inoculated into syngeneic mice. Finally, L.s.-1.25 markedly inhibited breast cancer cell adhesion to human platelet-coated surfaces. Thus, sulfated fucans are mainly responsible for the anti-inflammatory, anticoagulant, antiangiogenic, and antitumor activities of sulfated polysaccharides from L. saccharina brown seaweed

    Characterization of the patterns of drug-resistance mutations in newly diagnosed HIV-1 infected patients naïve to the antiretroviral drugs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The transmission of HIV-1 drug-resistant strains in drug naive patients may seriously compromise the efficacy of a first-line antiretroviral treatment. To better define this problem, a study in a cohort of newly diagnosed HIV-1 infected individuals has been conducted. This study is aimed to assess the prevalence and the patterns of the mutations recently associated with transmitted drug resistance in the reverse transcriptase (RT) and in protease (PR) of HIV-1.</p> <p>Methods</p> <p>Prevalence of transmitted drug resistant strains is determined in 255 newly diagnosed HIV-1 infected patients enrolled in different counselling and testing (CT) centres in Central Italy; the Avidity Index (AI) on the first available serum sample is also used to estimate time since infection. Logistic regression models are used to determine factors associated with infection by drug resistant HIV-1 strains.</p> <p>Results</p> <p>The prevalence of HIV-1 strains with at least one major drug resistance mutation is 5.9% (15/255); moreover, 3.9% (10/255) of patients is infected with HIV nucleoside reverse transcriptase inhibitor (NRTI)-resistant viruses, 3.5% (9/255) with HIV non-NRTI-resistant viruses and 0.4% (1/255) with HIV protease inhibitor (PI)-resistant viruses. Most importantly, almost half (60.0%) of patients carries HIV-1 resistant strains with more than one major drug resistance mutation. In addition, patients who had acquired HIV through homosexual intercourses are more likely to harbour a virus with at least one primary resistance mutation (OR 7.7; 95% CI: 1.7–35.0, P = 0.008).</p> <p>Conclusion</p> <p>The prevalence of drug resistant HIV-1 strains among newly diagnosed individuals in Central Italy is consistent with the data from other European countries. Nevertheless, the presence of drug-resistance HIV-1 mutations in complex patterns highlights an additional potential risk for public health and strongly supports the extension of wide genotyping to newly diagnosed HIV-1 infected patients.</p

    A Knowledge, Attitude, and Perception Study on Flu and COVID-19 Vaccination during the COVID-19 Pandemic: Multicentric Italian Survey Insights

    Get PDF
    In January 2020, Chinese health authorities identified a novel coronavirus strain never before isolated in humans. It quickly spread across the world, and was eventually declared a pandemic, leading to about 310 million confirmed cases and to 5,497,113 deaths (data as of 11 January 2022). Influenza viruses affect millions of people during cold seasons, with high impacts, in terms of mortality and morbidity. Patients with comorbidities are at a higher risk of acquiring severe problems due to COVID-19 and the flu-infections that could impact their underlying clinical conditions. In the present study, knowledge, attitudes, and opinions of the general population regarding COVID-19 and influenza immunization were evaluated. A multicenter, web-based, cross-sectional study was conducted between 10 February and 12 July 2020, during the first wave of SARS-CoV-2 infections among the general population in Italy. A sample of 4116 questionnaires was collected at the end of the study period. Overall, 17.5% of respondents stated that it was unlikely that they would accept a future COVID-19 vaccine (n = 720). Reasons behind vaccine refusal/indecision were mainly a lack of trust in the vaccine (41.1%), the fear of side effects (23.4%), or a lack of perception of susceptibility to the disease (17.1%). More than 50% (53.8%; n = 2214) of the sample participants were willing to receive flu vaccinations in the forthcoming vaccination campaign, but only 28.2% of cases had received it at least once in the previous five seasons. A higher knowledge score about SARS-CoV-2/COVID-19 and at least one flu vaccination during previous influenza seasons were significantly associated with the intention to be vaccinated against COVID-19 and influenza. The continuous study of factors, determining vaccination acceptance and hesitancy, is fundamental in the current context, in regard to improve vaccination confidence and adherence rates against vaccine preventable diseases
    corecore