44 research outputs found

    Super-resolution imaging of live sperm reveals dynamic changes of the actin cytoskeleton during acrosomal exocytosis

    Get PDF
    Filamentous actin (F-actin) is a key factor in exocytosis in many cell types. In mammalian sperm, acrosomal exocytosis (denoted the acrosome reaction or AR), a special type of controlled secretion, is regulated by multiple signaling pathways and the actin cytoskeleton. However, the dynamic changes of the actin cytoskeleton in live sperm are largely not understood. Here, we used the powerful properties of SiR-actin to examine actin dynamics in live mouse sperm at the onset of the AR. By using a combination of super-resolution microscopy techniques to image sperm loaded with SiR-actin or sperm from transgenic mice containing Lifeact-EGFP, six regions containing F-actin within the sperm head were revealed. The proportion of sperm possessing these structures changed upon capacitation. By performing live-cell imaging experiments, we report that dynamic changes of F-actin during the AR occur in specific regions of the sperm head. While certain F-actin regions undergo depolymerization prior to the initiation of the AR, others remain unaltered or are lost after exocytosis occurs. Our work emphasizes the utility of live-cell nanoscopy, which will undoubtedly impact the search for mechanisms that underlie basic sperm functions.Fil: Romarowski, Ana. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Velasco Félix, Ángel G.. Universidad Nacional Autónoma de México; MéxicoFil: Rodriguez, Paulina Torres. Universidad Nacional Autónoma de México; MéxicoFil: Gervasi, Mar?á G.. University Of Massachusetts Amherst;Fil: Xu, Xinran. School Of Biomedical Engineering;Fil: Luque, Guillermina Maria. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Contreras-Jiménez, Gastón. Universidad Nacional Autónoma de México; MéxicoFil: Sánchez-Cárdenas, Claudia. Universidad Nacional Autónoma de México; MéxicoFil: Ramírez-Gómez, Héctor V.. Universidad Nacional Autónoma de México; MéxicoFil: Krapf, Diego. School Of Biomedical Engineering;Fil: Visconti, Pablo E.. University Of Massachusetts Amherst;Fil: Krapf, Dario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Guerrero, Adán. Universidad Nacional Autónoma de México; MéxicoFil: Darszon, Alberto. Universidad Nacional Autónoma de México; MéxicoFil: Buffone, Mariano Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Comparative transcriptome sequencing of germline and somatic tissues of the Ascaris suum gonad

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Ascaris suum </it>(large roundworm of pigs) is a parasitic nematode that causes substantial losses to the meat industry. This nematode is suitable for biochemical studies because, unlike <it>C. elegans</it>, homogeneous tissue samples can be obtained by dissection. It has large sperm, produced in great numbers that permit biochemical studies of sperm motility. Widespread study of <it>A. suum </it>would be facilitated by more comprehensive genome resources and, to this end, we have produced a gonad transcriptome of <it>A. suum</it>.</p> <p>Results</p> <p>Two 454 pyrosequencing runs generated 572,982 and 588,651 reads for germline (TES) and somatic (VAS) tissues of the <it>A. suum </it>gonad, respectively. 86% of the high-quality (HQ) reads were assembled into 9,955 contigs and 69,791 HQ reads remained as singletons. 2.4 million bp of unique sequences were obtained with a coverage that reached 16.1-fold. 4,877 contigs and 14,339 singletons were annotated according to the <it>C. elegans </it>protein and the Kyoto Encyclopedia of Genes and Genomes (KEGG) protein databases. Comparison of TES and VAS transcriptomes demonstrated that genes participating in DNA replication, RNA transcription and ubiquitin-proteasome pathways are expressed at significantly higher levels in TES tissues than in VAS tissues. Comparison of the <it>A. suum </it>TES transcriptome with the <it>C. elegans </it>microarray dataset identified 165 <it>A. suum </it>germline-enriched genes (83% are spermatogenesis-enriched). Many of these genes encode serine/threonine kinases and phosphatases (KPs) as well as tyrosine KPs. Immunoblot analysis further suggested a critical role of phosphorylation in both testis development and spermatogenesis. A total of 2,681 <it>A. suum </it>genes were identified to have associated RNAi phenotypes in <it>C. elegans</it>, the majority of which display embryonic lethality, slow growth, larval arrest or sterility.</p> <p>Conclusions</p> <p>Using deep sequencing technology, this study has produced a gonad transcriptome of <it>A. suum</it>. By comparison with <it>C. elegans </it>datasets, we identified sets of genes associated with spermatogenesis and gonad development in <it>A. suum</it>. The newly identified genes encoding KPs may help determine signaling pathways that operate during spermatogenesis. A large portion of <it>A. suum </it>gonadal genes have related RNAi phenotypes in <it>C. elegans </it>and, thus, might be RNAi targets for parasite control.</p

    Identification of calcium-binding proteins associated with the human sperm plasma membrane

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The precise composition of the human sperm plasma membrane, the molecular interactions that define domain specific functions, and the regulation of membrane associated proteins during the capacitation process, still remain to be fully understood. Here, we investigated the repertoire of calcium-regulated proteins associated with the human sperm plasma membrane.</p> <p>Methods</p> <p>Surface specific radioiodination was combined with two-dimensional gel electrophoresis, a 45Ca-overlay assay, computer assisted image analysis and mass spectrometry to identify calcium-binding proteins exposed on the human sperm surface.</p> <p>Results</p> <p>Nine acidic 45Ca-binding sperm proteins were excised from stained preparative 2D gels and identified by mass spectrometry. Five of the calcium binding proteins; HSPA2 (HSP70-1), HSPA5 (Bip), HYOU1 (ORP150), serum amyloid P-component (SAP) and protein kinase C substrate 80K-H (80K-H) were found to be accessible to Iodo-Bead catalyzed 125I-labelling on the surface of intact human sperm. Agglutination and immunofluorescence analysis confirmed that SAP is situated on the plasma membrane of intact, motile sperm as well as permeabilized cells. Western blot analysis showed increased phosphorylation of human sperm 80K-H protein following in vitro capacitation. This is the first demonstration of the 80K-H protein in a mammalian sperm.</p> <p>Conclusion</p> <p>The presence of SAP on the surface of mature sperm implies that SAP has a physiological role in reproduction, which is thought to be in the removal of spermatozoa from the female genital tract via phagocytosis. Since 80K-H is a Ca2+-sensor recently implicated in the regulation of both inositol 1,4,5-trisphosphate receptor and transient receptor potential (TRP) cation channel activities, its detection in sperm represents the first direct signaling link between PKC and store-operated calcium channels identified in human sperm.</p

    Genome-wide scans identify known and novel regions associated with prolificacy and reproduction traits in a sub-Saharan African indigenous sheep (Ovis aries)

    Get PDF
    Maximizing the number of offspring born per female is a key functionality trait in commercial- and/or subsistence-oriented livestock enterprises. Although the number of offspring born is closely associated with female fertility and reproductive success, the genetic control of these traits remains poorly understood in sub-Saharan Africa livestock. Using selection signature analysis performed on Ovine HD BeadChip data from the prolific Bonga sheep in Ethiopia, 41 candidate regions under selection were identified. The analysis revealed one strong selection signature on a candidate region on chromosome X spanning BMP15, suggesting this to be the primary candidate prolificacy gene in the breed. The analysis also identified several candidate regions spanning genes not reported before in prolific sheep but underlying fertility and reproduction in other species. The genes associated with female reproduction traits included SPOCK1 (age at first oestrus), GPR173 (mediator of ovarian cyclicity), HB-EGF (signalling early pregnancy success) and SMARCAL1 and HMGN3a (regulate gene expression during embryogenesis). The genes involved in male reproduction were FOXJ1 (sperm function and successful fertilization) and NME5 (spermatogenesis). We also observed genes such as PKD2L2, MAGED1 and KDM3B, which have been associated with diverse fertility traits in both sexes of other species. The results confirm the complexity of the genetic mechanisms underlying reproduction while suggesting that prolificacy in the Bonga sheep, and possibly African indigenous sheep is partly under the control of BMP15 while other genes that enhance male and female fertility are essential for reproductive fitness

    Flagellar ion channels of sperm: similarities and differences between species

    Full text link
    Motility and fertilization potential of mammalian sperm are regulated by ion homeostasis which in turn is under tight control of ion channels and transporters. Sperm intracellular pH, membrane voltage and calcium concentration ([Ca2+]i) are all important for sperm activity within the female reproductive tract. While all mammalian sperm are united in their goal to find and fertilize an egg, the molecular mechanisms they utilize for this purpose are diverse and differ between species especially on the level of ion channels. Recent direct recording from sperm cells of different species indicate the differences between rodent, non-human primate, ruminant, and human sperm on the basic levels of their ion channel regulation. In this review we summarize the current knowledge about ion channel diversity of the animal kingdom and concentrate our attention on flagellar ion channels of mammalian sperm

    The cannabinoid system and male reproductive functions.

    No full text
    Cannabinoids, the main active components of marijuana, have been shown to exert different adverse effects on male reproduction both in vertebrates and invertebrates. In vivo, cannabinoids exert negative effects on hypothalamic-hypophyseal reproductive hormone secretion and testicular endocrine and exocrine functions. Furthermore, a large amount of experimental data obtained in vitro have clearly shown that cannabinoids negatively influence important sperm functions, including motility and acrosome reaction, two fundamental processes necessary for oocyte fertilisation. These inhibitory effects are mediated by the direct action of cannabinoids on sperm through the activation of the cannabinoid receptor subtype CNR1 that has been shown to be expressed in mature sperm. In the present paper, we briefly review the effects of cannabinoids and endocannabinoids, a particular group of endogenously produced cannabinoids, on male reproductive function

    A specific transitory increase in intracellular calcium induced by progesterone promotes acrosomal exocytosis in mouse sperm

    Get PDF
    During capacitation, sperm acquire the ability to undergo the acrosome reaction (AR), an essential step in fertilization. Progesterone produced by cumulus cells has been associated with various physiological processes in sperm, including stimulation of AR. An increase in intracellular Ca2+ ([Ca2+]i) is necessary for AR to occur. In this study, we investigated the spatio- temporal correlation between the changes in [Ca2+]i and AR in single mouse spermatozoa in response to Progesterone. We found that Progesterone stimulates an [Ca2+]i increase in five different patterns: gradual increase, oscillatory, late transitory, immediate transitory and sustained. We also observed that the [Ca2+]i increase promoted by Progesterone starts at either the flagellum or the head. We validated the use of FM4-64 as an indicator for the occurrence of the AR by simultaneously detecting its fluorescence increase and the loss of EGFP in transgenic EGFPAcr sperm. For the first time, we have simultaneously visualized the rise in [Ca2+]i and the process of exocytosis in response to Progesterone and found that only a specific transitory increase in [Ca2+]i originated in the sperm head promotes the initiation of AR.Fil: Romarowski, Ana. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Sánchez Cárdenas, Claudia. Universidad Nacional Autónoma de México. Instituto de Biotecnología; MéxicoFil: Ramírez Gómez, Héctor V.. Universidad Nacional Autónoma de México. Instituto de Biotecnología; MéxicoFil: Puga Molina, Lis del Carmen. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Treviño, Claudia L.. Universidad Nacional Autónoma de México. Instituto de Biotecnología; MéxicoFil: Hernández Cruz, Arturo. Universidad Nacional Autónoma de México. Instituto de Fisiología Celular; MéxicoFil: Darszon, Alberto I.. Universidad Nacional Autónoma de México. Instituto de Biotecnología; MéxicoFil: Buffone, Mariano Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentin

    A K+-selective cGMP-gated ion channel controls chemosensation of sperm

    No full text
    Eggs attract sperm by chemical factors, a process called chemotaxis. Sperm from marine invertebrates use cGMP signalling to transduce incident chemoattractants into changes in the Ca2+ concentration in the flagellum, which control the swimming behaviour during chemotaxis. The signalling pathway downstream of the synthesis of cGMP by a guanylyl cyclase is ill-defined. In particular, the ion channels that are involved in Ca2+ influx and their mechanisms of gating are not known. Using rapid voltage-sensitive dyes and kinetic techniques, we record the voltage response that is evoked by the chemoattractant in sperm from the sea urchin Arbacia punctulata. We show that the chemoattractant evokes a brief hyperpolarization followed by a sustained depolarization. The hyperpolarization is caused by the opening of K+-selective cyclic-nucleotide-gated (CNG) channels in the flagellum. Ca2+ influx commences at the onset of recovery from hyperpolarization. The voltage threshold of Ca2+ entry indicates the involvement of low-voltage-activated Ca(v) channels. These results establish a model of chemosensory transduction in sperm whereby a cGMP-induced hyperpolarization opens Ca(v) channels by a 'recovery-from-inactivation' mechanism and unveil an evolutionary kinship between transduction mechanisms in sperm and photoreceptors
    corecore