6 research outputs found

    A2A adenosine receptor deletion is protective in a mouse model of Tauopathy

    Get PDF
    © 2016 Macmillan Publishers Limited All rights reserved. This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivs 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http:// creativecommons.org/licenses/by-nc-nd/4.0/Consumption of caffeine, a non-selective adenosine A2A receptor (A2AR) antagonist, reduces the risk of developing Alzheimer's disease (AD) in humans and mitigates both amyloid and Tau burden in transgenic mouse models. However, the impact of selective A2AR blockade on the progressive development of AD-related lesions and associated memory impairments has not been investigated. In the present study, we removed the gene encoding A2AR from THY-Tau22 mice and analysed the subsequent effects on both pathological (Tau phosphorylation and aggregation, neuro-inflammation) and functional impairments (spatial learning and memory, hippocampal plasticity, neurotransmitter profile). We found that deleting A2ARs protect from Tau pathology-induced deficits in terms of spatial memory and hippocampal long-term depression. These effects were concomitant with a normalization of the hippocampal glutamate/gamma-amino butyric acid ratio, together with a global reduction in neuro-inflammatory markers and a decrease in Tau hyperphosphorylation. Additionally, oral therapy using a specific A2AR antagonist (MSX-3) significantly improved memory and reduced Tau hyperphosphorylation in THY-Tau22 mice. By showing that A2AR genetic or pharmacological blockade improves the pathological phenotype in a Tau transgenic mouse model, the present data highlight A2A receptors as important molecular targets to consider against AD and Tauopathies.This work was supported by grants from France Alzheimer (to DB) and LECMA/Alzheimer Forschung Initiative (to DB and CEM). DB and LVL got a Égide/Pessoa program EU exchange grant. Our laboratory is also supported by the LabEx (excellence laboratory) DISTALZ (Development of Innovative Strategies for a Transdisciplinary approach to ALZheimer’s disease), Inserm, CNRS, Université Lille 2, Lille Métropole Communauté Urbaine, Région Nord/Pas-de-Calais, FEDER, DN2M, ANR (ADONTAGE and ADORATAU, to DB) and FUI MEDIALZ. We thank the animal facility of IMPRT-IFR114 and M Besegher, I Brion, D Cappe, R Dehaynin, J Devassine, Y Lepage, C Meunier and D Taillieu for transgenic mouse production and animal care, as well as M Basquin, D Demeyer, S Eddarkaoui, H Obriot and M Schneider for support. CL holds a doctoral grant from Lille 2 University, and SB from Région Nord Pas de Calais and CHRU de Lille. VF holds a grant from Région Nord-Pas-de-Calais and Inserm. EF holds a post-doctoral grant from Région Nord-Pas-de-Calais (DN2M). LVL is an Investigator FCT (Fundação para a Ciência e Tecnologia, Portugal).info:eu-repo/semantics/publishedVersio

    From epidemiology to pathophysiology: what about caffeine in Alzheimer's disease?

    No full text
    Alzheimer’s disease (AD) is the most prevalent form of dementia in the aged population. Definitive diagnosis of AD is based on the presence of senile plaques and neurofibrillary tangles that are identified in post-mortem brain specimens. A third pathological component is inflammation. AD results from multiple genetic and environmental risk factors. Among other factors, epidemiological studies report beneficial effects of caffeine, a non-selective antagonist of adenosine receptors. In the present review, we discuss the impact of caffeine and the adenosinergic system in AD pathology as well as consequences in terms of pathology and therapeutics

    α-synuclein interacts with PrPC to induce cognitive impairment through mGluR5 and NMDAR2B

    No full text
    © 2017 Nature America, Inc., part of Springer Nature. All rights reserved.Synucleinopathies, such as Parkinson's disease and dementia with Lewy bodies, are neurodegenerative disorders that are characterized by the accumulation of α-synuclein (aSyn) in intracellular inclusions known as Lewy bodies. Prefibrillar soluble aSyn oligomers, rather than larger inclusions, are currently considered to be crucial species underlying synaptic dysfunction. We identified the cellular prion protein (PrPC) as a key mediator in aSyn-induced synaptic impairment. The aSyn-associated impairment of long-term potentiation was blocked in Prnp null mice and rescued following PrPC blockade. We found that extracellular aSyn oligomers formed a complex with PrPC that induced the phosphorylation of Fyn kinase via metabotropic glutamate receptors 5 (mGluR5). aSyn engagement of PrPC and Fyn activated NMDA receptor (NMDAR) and altered calcium homeostasis. Blockade of mGluR5-evoked phosphorylation of NMDAR in aSyn transgenic mice rescued synaptic and cognitive deficits, supporting the hypothesis that a receptor-mediated mechanism, independent of pore formation and membrane leakage, is sufficient to trigger early synaptic damage induced by extracellular aSyn.M.T.F., H.V.M. and J.E.C. were supported by individual grants from Fundação para a Ciência e Tecnologia (FCT) (SFRH/BD/52228/2013; SFRH/BPD/109347/2015; SFRH/BPD/87647/2012); L.V.L. and T.F.O. were supported by a grant from the Fritz Thyssen Stiftung (Az. 10.12.2.165), Germany. L.V.L. received an iMM Lisboa internal fund (BIG – Breakthrough Idea Grant) for part of the project. L.V.L. is an Investigator FCT, Portugal. T.F.O. is supported by the DFG Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Germany. LISBOA-01-0145-FEDER-007391, project co-financed by FEDER, POR Lisboa 2020 - Programa Operacional Regional de Lisboa, from PORTUGAL 2020 and by Fundação para a Ciência e a Tecnologia.info:eu-repo/semantics/publishedVersio

    Age-related shift in LTD is dependent on neuronal adenosine A2A receptors interplay with mGluR5 and NMDA receptors

    Get PDF
    Synaptic dysfunction plays a central role in Alzheimer's disease (AD), since it drives the cognitive decline. An association between a polymorphism of the adenosine A2A receptor (A2AR) encoding gene-ADORA2A, and hippocampal volume in AD patients was recently described. In this study, we explore the synaptic function of A2AR in age-related conditions. We report, for the first time, a significant overexpression of A2AR in hippocampal neurons of aged humans, which is aggravated in AD patients. A similar profile of A2AR overexpression in rats was sufficient to drive age-like memory impairments in young animals and to uncover a hippocampal LTD-to-LTP shift. This was accompanied by increased NMDA receptor gating, dependent on mGluR5 and linked to enhanced Ca(2+) influx. We confirmed the same plasticity shift in memory-impaired aged rats and APP/PS1 mice modeling AD, which was rescued upon A2AR blockade. This A2AR/mGluR5/NMDAR interaction might prove a suitable alternative for regulating aberrant mGluR5/NMDAR signaling in AD without disrupting their constitutive activity

    Characterisation of microbial attack on archaeological bone

    Get PDF
    As part of an EU funded project to investigate the factors influencing bone preservation in the archaeological record, more than 250 bones from 41 archaeological sites in five countries spanning four climatic regions were studied for diagenetic alteration. Sites were selected to cover a range of environmental conditions and archaeological contexts. Microscopic and physical (mercury intrusion porosimetry) analyses of these bones revealed that the majority (68%) had suffered microbial attack. Furthermore, significant differences were found between animal and human bone in both the state of preservation and the type of microbial attack present. These differences in preservation might result from differences in early taphonomy of the bones. © 2003 Elsevier Science Ltd. All rights reserved
    corecore