118 research outputs found

    A POLICY PROPOSAL TO THE PRESIDENT OF THE UNITED STATES TO REDUCE GUN SUICIDES AND GUN RELATED VIOLENCE IN AMERICA

    Get PDF
    A POLICY PROPOSAL TO THE PRESIDENT OF THE UNITED STATES TO REDUCE GUN SUICIDES AND GUN RELATED VIOLENCE IN AMERIC

    Chronic Respiratory Aeroallergen Exposure in Mice Induces Epithelial-Mesenchymal Transition in the Large Airways

    Get PDF
    Chronic allergic asthma is characterized by Th2-polarized inflammation and leads to airway remodeling and fibrosis but the mechanisms involved are not clear. To determine whether epithelial-mesenchymal transition contributes to airway remodeling in asthma, we induced allergic airway inflammation in mice by intranasal administration of house dust mite (HDM) extract for up to 15 consecutive weeks. We report that respiratory exposure to HDM led to significant airway inflammation and thickening of the smooth muscle layer in the wall of the large airways. Transforming growth factor beta-1 (TGF-β1) levels increased in mouse airways while epithelial cells lost expression of E-cadherin and occludin and gained expression of the mesenchymal proteins vimentin, alpha-smooth muscle actin (α-SMA) and pro-collagen I. We also observed increased expression and nuclear translocation of Snail1, a transcriptional repressor of E-cadherin and a potent inducer of EMT, in the airway epithelial cells of HDM-exposed mice. Furthermore, fate-mapping studies revealed migration of airway epithelial cells into the sub-epithelial regions of the airway wall. These results show the contribution of EMT to airway remodeling in chronic asthma-like inflammation and suggest that Th2-polarized airway inflammation can trigger invasion of epithelial cells into the subepithelial regions of the airway wall where they contribute to fibrosis, demonstrating a previously unknown plasticity of the airway epithelium in allergic airway disease

    CYP2C19 pharmacogenetics in advanced cancer: compromised function independent of genotype

    Get PDF
    CYP2C19 is a drug-metabolising enzyme involved in the metabolism of a number of chemotherapeutic agents including cyclophosphamide. Variants of the CYP2C19 gene result in a loss of function polymorphism, which affects approximately 3% of the Caucasian population. These individuals are poor metabolisers (PM) of a wide range of medications including omeprazole (OMP). In healthy subjects PM can be identified through homozygous variant genotype. However, a discordance between CYP2C19 genotype and phenotype has been reported previously in a small study of cancer patients. To investigate whether CYP2C19 activity was decreased in patients with advanced cancer, CYP2C19 genotype was determined in 33 advanced cancer patients using PCR-RFLP analysis for the two important allelic variants (*2,681G>A and *3,636G>A) and the activity of the enzyme was evaluated using the CYP2C19 probe drug OMP. The activity of the drug-metabolising enzyme CYP2C19 was severely compromised in advanced cancer patients, resulting in a PM status in 37% of the patients who had normal genotype. This is significantly (P<0.0005) higher than that would be predicted from the genotypic status of these patients. There was no evidence of a correlation between compromised CYP2C19 activity and any of the proinflammatory cytokines or acute phase response proteins studied. However, there was preliminary evidence of an association between PM status and low body mass (P=0.03). There is increasing interest in using pharmacogenetics to ‘individualise medicine', however, the results of this study indicate that in a cancer population genotyping for CYP2C19 would significantly underestimate the number of phenotypic PM of drugs, such as cyclophosphamide, which may be metabolised by this enzyme

    Expression of the T Cell Receptor αβ on a CD123+ BDCA2+ HLA-DR+ Subpopulation in Head and Neck Squamous Cell Carcinoma

    Get PDF
    Human Plasmacytoid Dendritic Cells (PDCs) infiltrating solid tumor tissues and draining lymph nodes of Head and Neck Squamous Cell Carcinoma (HNSCC) show an impaired immune response. In addition to an attenuated secretion of IFN-α little is known about other HNSCC-induced functional alterations in PDCs. Particular objectives in this project were to gain new insights regarding tumor-induced phenotypical and functional alterations in the PDC population. We showed by FACS analysis and RT-PCR that HNSCC orchestrates an as yet unknown subpopulation exhibiting functional autonomy in-vitro and in-vivo besides bearing phenotypical resemblance to PDCs and T cells. A subset, positive for the PDC markers CD123, BDCA-2, HLA-DR and the T cell receptor αβ (TCR-αβ) was significantly induced subsequent to stimulation with HNSCC in-vitro (p = 0.009) and also present in metastatic lymph nodes in-vivo. This subgroup could be functionally distinguished due to an enhanced production of IL-2 (p = 0.02), IL-6 (p = 0.0007) and TGF-β (not significant). Furthermore, after exposure to HNSCC cells, mRNA levels revealed a D-J-beta rearrangement of the TCR-beta chain besides a strong enhancement of the CD3ε chain in the PDC population. Our data indicate an interface between the PDC and T cell lineage. These findings will improve our understanding of phenotypical and functional intricacies concerning the very heterogeneous PDC population in-vivo

    Potentiators (specific therapies for class III and IV mutations) for cystic fibrosis

    Get PDF
    Cystic fibrosis (CF) is the commonest inherited life‐shortening illness in white populations, caused by a mutation in the gene that codes for the cystic fibrosis transmembrane regulator protein (CFTR), which functions as a salt transporter. This mutation mainly affects the airways where excess salt absorption dehydrates the airway lining leading to impaired mucociliary clearance. Consequently, thick, sticky mucus accumulates making the airway prone to chronic infection and progressive inflammation; respiratory failure often ensues. Other complications include malnutrition, diabetes and subfertility. Increased understanding of the condition has allowed pharmaceutical companies to design mutation‐specific therapies targeting the underlying molecular defect. CFTR potentiators target mutation classes III and IV and aim to normalise airway surface liquid and mucociliary clearance, which in turn impacts on the chronic infection and inflammation. This is an update of a previously published review. Objectives To evaluate the effects of CFTR potentiators on clinically important outcomes in children and adults with CF. Search methods We searched the Cochrane Cystic Fibrosis Trials Register, compiled from electronic database searches and handsearching of journals and conference abstract books. We also searched the reference lists of relevant articles, reviews and online clinical trial registries. Last search: 21 November 2018. Selection criteria Randomised controlled trials (RCTs) of parallel design comparing CFTR potentiators to placebo in people with CF. A separate review examines trials combining CFTR potentiators with other mutation‐specific therapies. Data collection and analysis The authors independently extracted data, assessed the risk of bias in included trials and used GRADE to assess evidence quality. Trial authors were contacted for additional data. Main results We included five RCTs (447 participants with different mutations) lasting from 28 days to 48 weeks, all assessing the CFTR potentiator ivacaftor. The quality of the evidence was moderate to low, mainly due to risk of bias (incomplete outcome data and selective reporting) and imprecision of results, particularly where few individuals experienced adverse events. Trial design was generally well‐documented. All trials were industry‐sponsored and supported by other non‐pharmaceutical funding bodies. F508del (class II) (140 participants) One 16‐week trial reported no deaths, or changes in quality of life (QoL) or lung function (either relative or absolute change in forced expiratory volume in one second (FEV1) (moderate‐quality evidence). Pulmonary exacerbations and cough were the most reported adverse events in ivacaftor and placebo groups, but there was no difference between groups (low‐quality evidence); there was also no difference between groups in participants interrupting or discontinuing treatment (low‐quality evidence). Number of days until the first exacerbation was not reported, but there was no difference between groups in how many participants developed pulmonary exacerbations. There was also no difference in weight. Sweat chloride concentration decreased, mean difference (MD) ‐2.90 mmol/L (95% confidence interval (CI) ‐5.60 to ‐0.20). G551D (class III) (238 participants) The 28‐day phase 2 trial (19 participants) and two 48‐week phase 3 trials (adult trial (167 adults), paediatric trial (52 children)) reported no deaths. QoL scores (respiratory domain) were higher with ivacaftor in the adult trial at 24 weeks, MD 8.10 (95% CI 4.77 to 11.43) and 48 weeks, MD 8.60 (95% CI 5.27 to 11.93 (moderate‐quality evidence). The adult trial reported a higher relative change in FEV1 with ivacaftor at 24 weeks, MD 16.90% (95% CI 13.60 to 20.20) and 48 weeks, MD 16.80% (95% CI 13.50 to 20.10); the paediatric trial reported this at 24 weeks, MD 17.4% (P < 0.0001)) (moderate‐quality evidence). These trials demonstrated absolute improvements in FEV1 (% predicted) at 24 weeks, MD 10.80% (95% CI 8.91 to 12.69) and 48 weeks, MD 10.44% (95% CI 8.56 to 12.32). The phase 3 trials reported increased cough, odds ratio (OR) 0.57 (95% CI 0.33 to 1.00) and episodes of decreased pulmonary function, OR 0.29 (95% CI 0.10 to 0.82) in the placebo group; ivacaftor led to increased dizziness in adults, OR 10.55 (95% CI 1.32 to 84.47). There was no difference between groups in participants interrupting or discontinuing treatment (low‐quality evidence). Fewer participants taking ivacaftor developed serious pulmonary exacerbations; adults taking ivacaftor developed fewer exacerbations (serious or not), OR 0.54 (95% CI 0.29 to 1.01). A higher proportion of participants were exacerbation‐free at 24 weeks with ivacaftor (moderate‐quality evidence). Ivacaftor led to a greater absolute change from baseline in FEV1 (% predicted) at 24 weeks, MD 10.80% (95% CI 8.91 to 12.69) and 48 weeks, MD 10.44% (95% CI 8.56 to 12.32); weight also increased at 24 weeks, MD 2.37 kg (95% CI 1.68 to 3.06) and 48 weeks, MD 2.75 kg (95% CI 1.74 to 3.75). Sweat chloride concentration decreased at 24 weeks, MD ‐48.98 mmol/L (95% CI ‐52.07 to ‐45.89) and 48 weeks, MD ‐49.03 mmol/L (95% CI ‐52.11 to ‐45.94). R117H (class IV) (69 participants) One 24‐week trial reported no deaths. QoL scores (respiratory domain) were higher with ivacaftor at 24 weeks, MD 8.40 (95% CI 2.17 to 14.63), but no relative changes in lung function were reported (moderate‐quality evidence). Pulmonary exacerbations and cough were the most reported adverse events in both groups, but there was no difference between groups; there was no difference between groups in participants interrupting or discontinuing treatment (low‐quality evidence). Number of days until the first exacerbation was not reported, but there was no difference between groups in how many participants developed pulmonary exacerbations. No changes in absolute change in FEV1 or weight were reported. Sweat chloride concentration decreased, MD ‐24.00 mmol/L (CI 95% ‐24.69 to ‐23.31). Authors' conclusions There is no evidence supporting the use of ivacaftor in people with the F508del mutation. Both G551D phase 3 trials demonstrated a clinically relevant impact of ivacaftor on outcomes at 24 and 48 weeks in adults and children (over six years of age) with CF. The R117H trial demonstrated an improvement in the respiratory QoL score, but no improvement in respiratory function. As new mutation‐specific therapies emerge, it is important that trials examine outcomes relevant to people with CF and their families and that adverse events are reported robustly and consistently. Post‐market surveillance is essential and ongoing health economic evaluations are required

    Virtual Patients and Sensitivity Analysis of the Guyton Model of Blood Pressure Regulation: Towards Individualized Models of Whole-Body Physiology

    Get PDF
    Mathematical models that integrate multi-scale physiological data can offer insight into physiological and pathophysiological function, and may eventually assist in individualized predictive medicine. We present a methodology for performing systematic analyses of multi-parameter interactions in such complex, multi-scale models. Human physiology models are often based on or inspired by Arthur Guyton's whole-body circulatory regulation model. Despite the significance of this model, it has not been the subject of a systematic and comprehensive sensitivity study. Therefore, we use this model as a case study for our methodology. Our analysis of the Guyton model reveals how the multitude of model parameters combine to affect the model dynamics, and how interesting combinations of parameters may be identified. It also includes a “virtual population” from which “virtual individuals” can be chosen, on the basis of exhibiting conditions similar to those of a real-world patient. This lays the groundwork for using the Guyton model for in silico exploration of pathophysiological states and treatment strategies. The results presented here illustrate several potential uses for the entire dataset of sensitivity results and the “virtual individuals” that we have generated, which are included in the supplementary material. More generally, the presented methodology is applicable to modern, more complex multi-scale physiological models
    corecore