62 research outputs found

    Controlling Radical Formation in the Photoactive Yellow Protein Chromophore

    Get PDF
    To understand how photoactive proteins function, it is necessary to understand the photoresponse of the chromophore. Photoactive yellow protein (PYP) is a prototypical signaling protein. Blue light triggers trans–cis isomerization of the chromophore covalently bound within PYP as the first step in a photocycle that results in the host bacterium moving away from potentially harmful light. At higher energies, photoabsorption has the potential to create radicals and free electrons; however, this process is largely unexplored. Here, we use photoelectron spectroscopy and quantum chemistry calculations to show that the molecular structure and conformation of the isolated PYP chromophore can be exploited to control the competition between trans–cis isomerization and radical formation. We also find evidence to suggest that one of the roles of the protein is to impede radical formation in PYP by preventing torsional motion in the electronic ground state of the chromophore

    DNA building blocks: keeping control of manufacture

    Get PDF
    Ribonucleotide reductase (RNR) is the only source for de novo production of the four deoxyribonucleoside triphosphate (dNTP) building blocks needed for DNA synthesis and repair. It is crucial that these dNTP pools are carefully balanced, since mutation rates increase when dNTP levels are either unbalanced or elevated. RNR is the major player in this homeostasis, and with its four different substrates, four different allosteric effectors and two different effector binding sites, it has one of the most sophisticated allosteric regulations known today. In the past few years, the structures of RNRs from several bacteria, yeast and man have been determined in the presence of allosteric effectors and substrates, revealing new information about the mechanisms behind the allosteric regulation. A common theme for all studied RNRs is a flexible loop that mediates modulatory effects from the allosteric specificity site (s-site) to the catalytic site for discrimination between the four substrates. Much less is known about the allosteric activity site (a-site), which functions as an on-off switch for the enzyme's overall activity by binding ATP (activator) or dATP (inhibitor). The two nucleotides induce formation of different enzyme oligomers, and a recent structure of a dATP-inhibited α6β2 complex from yeast suggested how its subunits interacted non-productively. Interestingly, the oligomers formed and the details of their allosteric regulation differ between eukaryotes and Escherichia coli Nevertheless, these differences serve a common purpose in an essential enzyme whose allosteric regulation might date back to the era when the molecular mechanisms behind the central dogma evolved

    Metallation and mismetallation of iron and manganese proteins in vitro and in vivo: the class I ribonucleotide reductases as a case study

    Get PDF
    How cells ensure correct metallation of a given protein and whether a degree of promiscuity in metal binding has evolved are largely unanswered questions. In a classic case, iron- and manganese-dependent superoxide dismutases (SODs) catalyze the disproportionation of superoxide using highly similar protein scaffolds and nearly identical active sites. However, most of these enzymes are active with only one metal, although both metals can bind in vitro and in vivo. Iron(II) and manganese(II) bind weakly to most proteins and possess similar coordination preferences. Their distinct redox properties suggest that they are unlikely to be interchangeable in biological systems except when they function in Lewis acid catalytic roles, yet recent work suggests this is not always the case. This review summarizes the diversity of ways in which iron and manganese are substituted in similar or identical protein frameworks. As models, we discuss (1) enzymes, such as epimerases, thought to use Fe[superscript II] as a Lewis acid under normal growth conditions but which switch to Mn[superscript II] under oxidative stress; (2) extradiol dioxygenases, which have been found to use both Fe[superscript II] and Mn[superscript II], the redox role of which in catalysis remains to be elucidated; (3) SODs, which use redox chemistry and are generally metal-specific; and (4) the class I ribonucleotide reductases (RNRs), which have evolved unique biosynthetic pathways to control metallation. The primary focus is the class Ib RNRs, which can catalyze formation of a stable radical on a tyrosine residue in their β2 subunits using either a di-iron or a recently characterized dimanganese cofactor. The physiological roles of enzymes that can switch between iron and manganese cofactors are discussed, as are insights obtained from the studies of many groups regarding iron and manganese homeostasis and the divergent and convergent strategies organisms use for control of protein metallation. We propose that, in many of the systems discussed, “discrimination” between metals is not performed by the protein itself, but it is instead determined by the environment in which the protein is expressed.National Institutes of Health (U.S.) (Grant GM81393

    Spectroscopic Studies of the Iron and Manganese Reconstituted Tyrosyl Radical in Bacillus Cereus Ribonucleotide Reductase R2 Protein

    Get PDF
    Ribonucleotide reductase (RNR) catalyzes the rate limiting step in DNA synthesis where ribonucleotides are reduced to the corresponding deoxyribonucleotides. Class Ib RNRs consist of two homodimeric subunits: R1E, which houses the active site; and R2F, which contains a metallo cofactor and a tyrosyl radical that initiates the ribonucleotide reduction reaction. We studied the R2F subunit of B. cereus reconstituted with iron or alternatively with manganese ions, then subsequently reacted with molecular oxygen to generate two tyrosyl-radicals. The two similar X-band EPR spectra did not change significantly over 4 to 50 K. From the 285 GHz EPR spectrum of the iron form, a g1-value of 2.0090 for the tyrosyl radical was extracted. This g1-value is similar to that observed in class Ia E. coli R2 and class Ib R2Fs with iron-oxygen cluster, suggesting the absence of hydrogen bond to the phenoxyl group. This was confirmed by resonance Raman spectroscopy, where the stretching vibration associated to the radical (C-O, ν7a = 1500 cm−1) was found to be insensitive to deuterium-oxide exchange. Additionally, the 18O-sensitive Fe-O-Fe symmetric stretching (483 cm−1) of the metallo-cofactor was also insensitive to deuterium-oxide exchange indicating no hydrogen bonding to the di-iron-oxygen cluster, and thus, different from mouse R2 with a hydrogen bonded cluster. The HF-EPR spectrum of the manganese reconstituted RNR R2F gave a g1-value of ∼2.0094. The tyrosyl radical microwave power saturation behavior of the iron-oxygen cluster form was as observed in class Ia R2, with diamagnetic di-ferric cluster ground state, while the properties of the manganese reconstituted form indicated a magnetic ground state of the manganese-cluster. The recent activity measurements (Crona et al., (2011) J Biol Chem 286: 33053–33060) indicates that both the manganese and iron reconstituted RNR R2F could be functional. The manganese form might be very important, as it has 8 times higher activity

    Crystallographic studies on the subunits and holocomplex of class Ib ribonucleotide reductase

    Get PDF
    The enzyme ribonucleotide reductase (RNR) is essential in all cellular organisms since it catalyses the conversion of all four ribonucleotides to corresponding deoxyribonucleotides (dNTPs), the building blocks of DNA. To be able to support the cells with appropriate amounts of dNTPs, RNR is highly allosterically regulated. The biologically active form of class I RNR is thought to be composed of two homodimers, R1 and R2. The enzymatic reduction is initiated by an organic free radical generated by a di-iron site located in the smaller R2 subunit. When the radical is needed for reaction initiation it is transported to the active site in the R1 subunit. This thesis presents structural studies of class Ib RNR from two different pathogenic bacteria. M. tuberculosis codes for two different R2 subunits of the class Ib RNR, R2F-1 and R2F-2 respectively. The crystal structure of the R2F-2 subunit was determined to 2.2 Å. It is an all helical protein with the di-iron site positioned within a four helix bundle. The di-iron site is in its reduced state. Comparison of the R2F-2 structure with a model of R2F-1 suggests that the important differences are located at the C-terminus. The three-dimensional structure of the large subunit of the first member of a class Ib RNR, R1E of S. typhimurium, was determined in its native form and in complex with four of its allosteric specificity effectors. The enzyme contains a characteristic 10-stranded α/β-barrel with catalytic residues at a finger loop in its centre. The N-terminal domain is about 50 residues shorter in the class Ib enzymes compared to the class Ia enzymes, which explains the absence of the allosteric overall activity. The crystal structure of the first holocomplex of any RNR was determined to 4Å. The structure of R1E/R2F from S. typhimurium reveals a non symmetric interaction between the two subunits. There is clear binding of a polypeptide in the hydrophobic pocket of one R1E monomer. The pocket is known to mediate the interaction between the two subunits and we propose that it is the C-terminus of an interacting R2F subunit that binds in the cleft

    NrdI, a flavodoxin involved in maintenance of the diferric-tyrosyl radical cofactor in Escherichia coli class Ib ribonucleotide reductase

    No full text
    Ribonucleotide reductase (RNR) catalyzes the conversion of nucleotides to deoxynucleotides and is essential in all organisms. Class I RNRs consist of two homodimeric subunits: α2 and β2. The α subunit contains the site of nucleotide reduction, and the β subunit contains the essential diferric-tyrosyl radical (Y•) cofactor. Escherichia coli contains genes encoding two class I RNRs (Ia and Ib) and a class III RNR, which is active only under anaerobic conditions. Its class Ia RNR, composed of NrdA (α) and NrdB (β), is expressed under normal aerobic growth conditions. The class Ib RNR, composed of NrdE (α) and NrdF (β), is expressed under oxidative stress and iron-limited growth conditions. Our laboratory is interested in pathways of cofactor biosynthesis and maintenance in class I RNRs and modulation of Y• levels as a means of regulating RNR activity. Our recent studies have implicated a [2Fe2S]-ferredoxin, YfaE, in the NrdB diferric-Y• maintenance pathway and possibly in the biosynthetic and regulatory pathways. Here, we report that NrdI is a flavodoxin counterpart to YfaE for the class Ib RNR. It possesses redox properties unprecedented for a flavodoxin (Eox/sq = −264 ± 17 mV and Esq/hq = −255 ± 17 mV) that allow it to mediate a two-electron reduction of the diferric cluster of NrdF via two successive one-electron transfers. Data presented support the presence of a distinct maintenance pathway for NrdEF, orthogonal to that for NrdAB involving YfaE
    corecore