67 research outputs found

    Somatic diversification of variable lymphocyte receptors in the agnathan sea lamprey

    Full text link
    Although jawless vertebrates are apparently capable of adaptive immune responses, they have not been found to possess the recombinatorial antigen receptors shared by all jawed vertebrates. Our search for the phylogenetic roots of adaptive immunity in the lamprey has instead identified a new type of variable lymphocyte receptors (VLRs) composed of highly diverse leucine-rich repeats (LRR) sandwiched between amino- and carboxy-terminal LRRs. An invariant stalk region tethers the VLRs to the cell surface by means of a glycosyl-phosphatidyl-inositol anchor. To generate rearranged VLR genes of the diversity necessary for an anticipatory immune system, the single lamprey VLR locus contains a large bank of diverse LRR cassettes, available for insertion into an incomplete germline VLR gene. Individual lymphocytes express a uniquely rearranged VLR gene in monoallelic fashion. Different evolutionary strategies were thus used to generate highly diverse lymphocyte receptors through rearrangement of LRR modules in agnathans ( jawless fish) and of immunoglobulin gene segments in gnathostomes ( jawed vertebrates).Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62870/1/nature02740.pd

    CD98hc facilitates B cell proliferation and adaptive humoral immunity.

    Get PDF
    The proliferation of antigen-specific lymphocytes and resulting clonal expansion are essential for adaptive immunity. We report here that B cell-specific deletion of the heavy chain of CD98 (CD98hc) resulted in lower antibody responses due to total suppression of B cell proliferation and subsequent plasma cell formation. Deletion of CD98hc did not impair early B cell activation but did inhibit later activation of the mitogen-activated protein kinase Erk1/2 and downregulation of the cell cycle inhibitor p27. Reconstitution of CD98hc-deficient B cells with CD98hc mutants showed that the integrin-binding domain of CD98hc was required for B cell proliferation but that the amino acid-transport function of CD98hc was dispensable for this. Thus, CD98hc supports integrin-dependent rapid proliferation of B cells. We propose that the advantage of adaptive immunity favored the appearance of CD98hc in vertebrates

    Non-mammalian model systems for studying neuro-immune interactions after spinal cord injury

    Get PDF
    Mammals exhibit poor recovery after injury to the spinal cord, where the loss of neurons and neuronal connections can be functionally devastating. In contrast, it has long been appreciated that many non-mammalian vertebrate species exhibit significant spontaneous functional recovery after spinal cord injury (SCI). Identifying the biological responses that support an organism\u27s inability or ability to recover function after SCI is an important scientific and medical question. While recent advances have been made in understanding the responses to SCI in mammals, we remain without an effective clinical therapy for SCI. A comparative biological approach to understanding responses to SCI in non-mammalian vertebrates will yield important insights into mechanisms that promote recovery after SCI. Presently, mechanistic studies aimed at elucidating responses, both intrinsic and extrinsic to neurons, that result in different regenerative capacities after SCI across vertebrates are just in their early stages. There are several inhibitory mechanisms proposed to impede recovery from SCI in mammals, including reactive gliosis and scarring, myelin associated proteins, and a suboptimal immune response. One hypothesis to explain the robust regenerative capacity of several non-mammalian vertebrates is a lack of some or all of these inhibitory signals. This review presents the current knowledge of immune responses to SCI in several non-mammalian species that achieve anatomical and functional recovery after SCI. This subject is of growing interest, as studies increasingly show both beneficial and detrimental roles of the immune response following SCI in mammals. A long-term goal of biomedical research in all experimental models of SCI is to understand how to promote functional recovery after SCI in humans. Therefore, understanding immune responses to SCI in non-mammalian vertebrates that achieve functional recovery spontaneously may identify novel strategies to modulate immune responses in less regenerative species and promote recovery after SCI

    Eur. J. Immunogenet.

    No full text

    Immunogenetics

    No full text

    Origin and affinities of indigenous Siberian populations as revealed by HLA class II gene frequencies

    No full text
    Gene frequencies of eight Siberian populations (Mansi, Tuva, Todja, Tofalar, Buryat, Okhotsk Evenki, Ulchi, and Negidal) were determined for the three most polymorphic HLA class II loci (DRB1, DQA1, arid DQB1) by a combination of single- stranded conformational polymorphism typing and DNA sequencing. The number of alleles per population ranged from 16 to 25, from seven to eight, and from nine to 14 for the DRB1, DQA1, and DQB1 loci, respectively. The alleles at the three loci occurred in 66 different combinations (haplotypes), most of which appeared to be of ancient origin, but some may have arisen within the Siberian populations. Phylogenetic analysis of the frequency data suggests that the HLA genes of Asian and indigenous American populations stem from a single pool distinct from the gene pools of European and African populations. The Asian populations separate into two clusters, one of which encompasses nearly all the Siberian populations and all the indigenous American populations tested, while the other consists of Central, Eastern, and Southeastern Asian populations. The position of the Tuva people appears to be near the node front which the two clusters diverge. The divergence time of the two clusters is estimated to be 21,000-24,000 years BP. Three different branches of the native Siberian peoples seem to have contributed founders for the indigenous American ethnic groups

    Isolation and characterization of lymphocyte-like cells from a lamprey

    No full text
    Lymphocyte-like cells in the intestine of the sea lamprey, Petromyzon marinus, were isolated by flow cytometry under light-scatter conditions used for the purification of mouse intestinal lymphocytes. The purified lamprey cells were morphologically indistinguishable from mammalian lymphocytes. A cDNA library was prepared from the lamprey lymphocyte-like cells, and more than 8,000 randomly selected clones were sequenced. Homology searches comparing these ESTs with sequences deposited in the databases led to the identification of numerous genes homologous to those predominantly or characteristically expressed in mammalian lymphocytes, which included genes controlling lymphopoiesis, intracellular signaling, proliferation, migration, and involvement of lymphocytes in innate immune responses. Genes closely related to those that in grathostomes control antigen processing and transport of antigenic peptides could be ascertained, although no sequences with significant similarity to MHC, T cell receptor, or Ig genes were found. The data suggest that the evolution of lymphocytes in the lamprey has reached a stage poised for the emergence of adaptive immunity
    • …
    corecore