49 research outputs found

    Quantitative Assessment of Microalgae Biomass and Lipid Stability Post-Cultivation

    Get PDF
    Processing of microalgal biomass to biofuels and other products requires the removal of the culture from a well-controlled growth system to a containment or preprocessing step at non-ideal growth conditions, such as darkness, minimal gas exchange, and fluctuating temperatures. The conditions and the length of time between harvest and processing will impact microalgal metabolism resulting in biomass and lipid degradation. This study experimentally investigates the impact of time and temperature on Nannochloropsis salina harvested from outdoor plate photobioreactors. The impact of three temperatures, 4°, 40° or 70°C, on biomass and lipid content (as fatty acid methyl esters) of the harvested microalgae was evaluated over a 156 hour time period. Results show that for N. salina, time and temperature are key factors that negatively impact biomass and lipid yields. The temperature of 70°C resulted in the highest degradation with the overall biofuel potential reduced by 30% over 156 hours. Short time periods, 24 hours, and low temperatures are shown to have little effect on the harvested biomass

    Using Automated Glycan Assembly (AGA) for the Practical Synthesis of Heparan Sulfate Oligosaccharide Precursors

    Get PDF
    Herein we report synthesis of complex heparan sulfate oligosaccharide precursors by automated glycan assembly using disaccharide donor building blocks. Rapid access to a hexasaccharide was achieved through iterative solid phase glycosylations on a photolabile resin using Glyconeer™, an automated oligosaccharide synthesiser, followed by photochemical cleavage and glycan purification using simple flash column chromatography

    OS-9 and GRP94 deliver mutant alpha1-antitrypsin to the Hrd1-SEL1L ubiquitin ligase complex for ERAD.

    No full text
    Terminally misfolded or unassembled proteins in the early secretory pathway are degraded by a ubiquitin- and proteasome-dependent process known as ER-associated degradation (ERAD). How substrates of this pathway are recognized within the ER and delivered to the cytoplasmic ubiquitin-conjugating machinery is unknown. We report here that OS-9 and XTP3-B/Erlectin are ER-resident glycoproteins that bind to ERAD substrates and, through the SEL1L adaptor, to the ER-membrane-embedded ubiquitin ligase Hrd1. Both proteins contain conserved mannose 6-phosphate receptor homology (MRH) domains, which are required for interaction with SEL1L, but not with substrate. OS-9 associates with the ER chaperone GRP94 which, together with Hrd1 and SEL1L, is required for the degradation of an ERAD substrate, mutant alpha(1)-antitrypsin. These data suggest that XTP3-B and OS-9 are components of distinct, partially redundant, quality control surveillance pathways that coordinate protein folding with membrane dislocation and ubiquitin conjugation in mammalian cells

    A Robotic Platform for Neurointervention

    No full text
    Neurointerventional procedures involve a guidewire and a system of catheters that are maneuvered through the circulatory system into the brain. Due to the procedure's precise nature, X-rays enable practitioners to see the catheter inside the patient, leaving them vulnerable to excess radiation even with protective lead clothing. This paper explores the development of a proof-of-concept prototype for remotely controlling modularized telescoping catheters ensuring rotational and linear accuracy and compatibility with various catheter sizes. Several prototypes were developed, systematically refining the model through testing and further literature research. While improved manufacturing techniques and electronics would be required to get the necessary precision, the final iteration showed that this concept for telescoping catheter control is viable. Recommendations for future work are discussed, and this project serves as a strong starting point for future endeavors that will lead to improvements in the field of robotic neurointervention

    Time-to-Detection of Inducible Macrolide Resistance in Mycobacterium abscessus Subspecies and Its Association with the Erm(41) Sequevar.

    No full text
    Mutations in the erm(41) gene of M.abscessus group organisms are associated with differences in inducible macrolide resistance, with current recommendations being to hold rapidly growing isolates for up to 14 days in order to ensure that resistance which develops more slowly can be detected. This study aimed to determine the ideal incubation time for accurate identification of inducible macrolide resistance as well as to determine if there was an association between the time taken to detect inducible resistance in M.abscessus group organisms and their erm(41) sequevar. We amplified and sequenced the erm(41) genes of a total of 104 M.abscessus group isolates and determined their sequevars. The isolates were tested for phenotypic clarithromycin resistance at days 7, 10, 14 and 21, using Trek Diagnostics Sensititre RAPMYCO microbroth dilution plates. Associations between erm(41) gene sequevars and time to detection of resistance were evaluated using Fisher's exact test in R. The samples included in this study fell into 14 sequevars, with the majority of samples falling into Sequevar02 (16), Sequevar06 (15), Sequevar08 (7) and Sequvar 15 (31), and several isolates that were in small clusters, or unique. The majority (82.7%) of samples exhibiting inducible macrolide resistance were interpreted as resistant by day 7. Two isolates in Sequevar02, which has a T28C mutation that is associated with sensitivity, showed intermediate resistance at day 14, though the majority (13) were sensitive at day 14. The majority of isolates with inducible macrolide resistance fell into Sequevars 06,08 and 15, none of which contain the T28C mutation. These sequevars were analyzed to determine if there was any correlation between sequevar and time to detection of resistance. None was found. Based on these findings, we recommend the addition of a day 7 read to the CLSI guidelines to improve turn-around-times for these isolates. It is also recommended that erm(41) gene sequencing be added to routine phenotypic testing for the resolution of cases with difficult-to-interpret phenotypic results

    Comparison of Sample Preparation Methods Used for the Next-Generation Sequencing of Mycobacterium tuberculosis.

    No full text
    The advent and widespread application of next-generation sequencing (NGS) technologies to the study of microbial genomes has led to a substantial increase in the number of studies in which whole genome sequencing (WGS) is applied to the analysis of microbial genomic epidemiology. However, microorganisms such as Mycobacterium tuberculosis (MTB) present unique problems for sequencing and downstream analysis based on their unique physiology and the composition of their genomes. In this study, we compare the quality of sequence data generated using the Nextera and TruSeq isolate preparation kits for library construction prior to Illumina sequencing-by-synthesis. Our results confirm that MTB NGS data quality is highly dependent on the purity of the DNA sample submitted for sequencing and its guanine-cytosine content (or GC-content). Our data additionally demonstrate that the choice of library preparation method plays an important role in mitigating downstream sequencing quality issues. Importantly for MTB, the Illumina TruSeq library preparation kit produces more uniform data quality than the Nextera XT method, regardless of the quality of the input DNA. Furthermore, specific genomic sequence motifs are commonly missed by the Nextera XT method, as are regions of especially high GC-content relative to the rest of the MTB genome. As coverage bias is highly undesirable, this study illustrates the importance of appropriate protocol selection when performing NGS studies in order to ensure that sound inferences can be made regarding mycobacterial genomes
    corecore