71 research outputs found

    Results from campaign in the Channel-North Sea and Belgian Coastal Zone – RV <i>Simon Stevin</i>

    Get PDF
    Objective: The purpose of this study is to determine the relationship between iron storage and overall well-being in female college athletes. This was done to determine a cost-effective screening method for iron deficiency. Design: Retrospective Cohort Subjects and Settings: All subjects were 117 Division I Female Athletes at James Madison University. Subjects were ages 17-22 from different teams(Cross Country, Track & Field, Basketball, Field Hockey, Lacrosse, Volleyball, Golf, Swimming & Diving, Soccer, and Softball). We excluded 1 subject based on a medical diagnosis. Some subjects had more than one data entry based on their year at JMU. Main Outcome Measure: Data was recorded for individuals who have in the past received blood draws testing for ferritin levels and have completed a Henriques 10-Item Well-being Questionnaire(H10WB) within a year of the blood draw. Results: Correlations resulted in no significant relationship between ferritin levels and H10WB total scores with a 1-tailed p-value of .071. There was some significance seen with responses to individual questions within the questionnaire and ferritin(p=.02 and p= .032). Conclusion: Since there was very little significance found for this relationship we can conclude that the symptoms of changes in athlete’s overall well-being status are not present in those with iron deficiency. Research does support a relationship between these symptoms with iron deficiency anemia therefore, these results could represent that those symptoms are not experienced with iron deficiency. This suggests the increased need to find a screening tool for healthcare providers to use to determine an iron deficiency without requiring blood draws from everyone. This would allow professionals to determine this deficiency before it becomes anemia and these symptoms develop

    Environmental drivers of distribution and reef development of the Mediterranean coral Cladocora caespitosa

    Get PDF
    Cladocora caespitosa is the only Mediterranean scleractinian similar to tropical reef-building corals. While this species is part of the recent fossil history of the Mediterranean Sea, it is currently considered endangered due to its decline during the last decades. Environmental factors affecting the distribution and persistence of extensive bank reefs of this endemic species across its whole geographic range are poorly understood. In this study, we examined the environmental response of C. caespitosa and its main types of assemblages using ecological niche modeling and ordination analysis. We also predicted other suitable areas for the occurrence of the species and assessed the conservation effectiveness of Mediterranean marine protected areas (MPAs) for this coral. We found that phosphate concentration and wave height were factors affecting both the occurrence of this versatile species and the distribution of its extensive bioconstructions in the Mediterranean Sea. A set of factors (diffuse attenuation coefficient, calcite and nitrate concentrations, mean wave height, sea surface temperature, and shape of the coast) likely act as environmental barriers preventing the species from expansion to the Atlantic Ocean and the Black Sea. Uncertainties in our large-scale statistical results and departures from previous physiological and ecological studies are also discussed under an integrative perspective. This study reveals that Mediterranean MPAs encompass eight of the ten banks and 16 of the 21 beds of C. caespitosa. Preservation of water clarity by avoiding phosphate discharges may improve the protection of this emblematic species.Spanish Ministry of Economy and Competitiveness [CTM2014-57949-R]info:eu-repo/semantics/publishedVersio

    Optimized plankton imaging, clustering and visualization workflows through integrative data management and application of artificial intelligence

    Get PDF
    Phytoplankton is a diverse group of photosynthesizing organisms which account for approximately fifty percent of the primary production on Earth. Increasing our knowledge on phytoplankton dynamics (and plankton in general) is therefore of major importance. In the present research, we aimed to reveal the spatiotemporal dynamics of the phyto- and zooplankton community in the Eastern English Channel, Southern Bight of the North Sea and the Thames estuary. To do so, we organized a JERICO-NEXT Lifewatch cruise in May 2017 on board of the RV Simon Stevin and sampled 44 stations, involving five research institutions from France (CNRS-LOG,), The Netherlands (RWS, NIOZ) and Belgium (UGENT, VLIZ). To quantify the biomass of the phytoplankton community we used a unique combination of three flow cytometers and two Fast Repetition Rate Fluorometerss that were coupled to the underway ferrybox system. These observations were complemented with Water Insight Spectrometer and water profile data (by means of a CTD) and samples for zooplankton, pigment and nutrient analysis. A dedicated data workshop was organized with all partners to conduct a joint analysis on both the biotic and abiotic data. A first exploration of the data, by means of regression-based models and multivariate statistics, suggested that mainly nutrient discharges from the rivers influence the plankton structure. Furthermore, water turbidity is controlling photosynthetic activity and horizontal and vertical variations of photosynthetic properties can be discriminated

    Motif Minang Kaluak Paku Kacang Balimbiang pada Busana Kasual

    Get PDF
    Minangkabau sebagai salah satu suku bangsa yang mengisi kekhasan budaya Indonesia memiliki warisan budaya yang terpencar dalam berbagai aspek kehidupannya. Salah satu warisan budaya adalah seni ukir. Seni ukir yang dikembangkan dengan mengambil ide dari alam memiliki makna-makna filosofi bagi kehidupan masyarakat Minangkabau. Semua jenis ukiran yang dipahatkan di Rumah Gadang menunjukkan unsur penting pembentuk budaya Minangkabau bercerminkan kepada apa yang ada di alam. Salah satu ukiran pada rumah gadang yaitu kaluak paku. Kaluak paku adalah nama salah satu motif ukiran dalam adat Minangkabau. Berasal dari motif gulungan (kelukan/kaluak) pada ujung tanaman pakis (paku) yang masih muda. Ukiran kaluak paku rumah gadang melambangkan tanggung jawab seorang lelaki dalam adat Minangkabau kepada generasi penerus, sebagai ayah dari anak-anaknya dan sebagai mamak dari kemenakan (keponakan). Ukiran rumah gadang kaluak paku minangkabau inilah yang menjadi sumber ide penciptaan busana pada tugas akhir ini. Pada Penciptaan karya ini menggunakan beberapa metode, yaitu metode pendekatan estetis dan ergonomis, metode pengumpulan data dengan studi pustaka, dan motode penciptaan dengan teori Gustami Sp 3 tahap 6 Langkah. Dalam proses pembuatan karya dibutuhkan beberapa data, cara pengumpulan data acuan berdasarkan pengumpulan data pustaka yaitu berupa buku, jurnal pada media sosial, serta aplikasi pada smartphone seperti pinterest. Data yang dikumpulkan yang paling utama adalah gambar bentuk visual dari ukiran tanaman kaluak paku minangkabau dan busana kasual. Penciptaan karya yang dihasilkan yaitu berupa 8 busana kasual. Siluet pada kesuluruhan hasil karya yaitu memiliki siluet A yang mengembang pada bagian bawah. Pada penciptaan karya ini menggunakan bahan utama primisima. Perpaduan warna yang diterapkan menggunakan warna khas minangkabau yang diambil dari warna bendera adatnya “marawa” yaitu merah, hitam, dan kuning. Karya- karya yang dihasilkan dengan penggunaan warna tersebut sangat sesuai dengan tema yang mengangkat ukiran rumah gadang kaluak paku minangkabau. Kata Kunci : Minang, Kaluak Paku Kacang Balimbiang, Kasua

    Reef fishes at all trophic levels respond positively to effective marine protected areas

    Get PDF
    Marine Protected Areas (MPAs) offer a unique opportunity to test the assumption that fishing pressure affects some trophic groups more than others. Removal of larger predators through fishing is often suggested to have positive flow-on effects for some lower trophic groups, in which case protection from fishing should result in suppression of lower trophic groups as predator populations recover. We tested this by assessing differences in the trophic structure of reef fish communities associated with 79 MPAs and open-access sites worldwide, using a standardised quantitative dataset on reef fish community structure. The biomass of all major trophic groups (higher carnivores, benthic carnivores, planktivores and herbivores) was significantly greater (by 40% - 200%) in effective no-take MPAs relative to fished open-access areas. This effect was most pronounced for individuals in large size classes, but with no size class of any trophic group showing signs of depressed biomass in MPAs, as predicted from higher predator abundance. Thus, greater biomass in effective MPAs implies that exploitation on shallow rocky and coral reefs negatively affects biomass of all fish trophic groups and size classes. These direct effects of fishing on trophic structure appear stronger than any top down effects on lower trophic levels that would be imposed by intact predator populations. We propose that exploitation affects fish assemblages at all trophic levels, and that local ecosystem function is generally modified by fishing

    Evidence for rangewide panmixia despite multiple barriers to dispersal in a marine mussel

    Get PDF
    Oceanographic features shape the distributional and genetic patterns of marine species by interrupting or promoting connections among populations. Although general patterns commonly arise, distributional ranges and genetic structure are species-specific and do not always comply with the expected trends. By applying a multimarker genetic approach combined with Lagrangian particle simulations (LPS) we tested the hypothesis that oceanographic features along northeastern Atlantic and Mediterranean shores influence dispersal potential and genetic structure of the intertidal mussel Perna perna. Additionally, by performing environmental niche modelling we assessed the potential and realized niche of P. perna along its entire native distributional range and the environmental factors that best explain its realized distribution. Perna perna showed evidence of panmixia across > 4,000 km despite several oceanographic breaking points detected by LPS. This is probably the result of a combination of life history traits, continuous habitat availability and stepping-stone dynamics. Moreover, the niche modelling framework depicted minimum sea surface temperatures (SST) as the major factor shaping P. perna distributional range limits along its native areas. Forthcoming warming SST is expected to further change these limits and allow the species to expand its range polewards though this may be accompanied by retreat from warmer areas.Fundacao para a Ciencia e Tecnologia (FCT-MEC, Portugal) [UID/Multi/04326/2013, IF/01413/2014/CP1217/CT0004]; South African Research Chairs Initiative (SARChI) of the Department of Science and Technology; National Research Foundation; South African National Research Foundation (NRF); Portuguese Fundacao para a Ciencia e Tecnologia (FCT) [SFRH/BPD/85040/2012, SFRH/BPD/111003/2015]info:eu-repo/semantics/publishedVersio

    Local flexibility in feeding behaviour and contrasting microhabitat use of an omnivore across latitudes

    Get PDF
    As the environment is getting warmer and species are redistributed, consumers can be forced to adjust their interactions with available prey, and this could have cascading effects within food webs. To better understand the capacity for foraging flexibility, our study aimed to determine the diet variability of an ectotherm omnivore inhabiting kelp forests, the sea urchin Echinus esculentus, along its entire latitudinal distribution in the northeast Atlantic. Using a combination of gut content and stable isotope analyses, we determined the diet and trophic position of sea urchins at sites in Portugal (42° N), France (49° N), southern Norway (63° N), and northern Norway (70° N), and related these results to the local abundance and distribution of putative food items. With mean estimated trophic levels ranging from 2.4 to 4.6, omnivory and diet varied substantially within and between sites but not across latitudes. Diet composition generally reflected prey availability within epiphyte or understorey assemblages, with local affinities demonstrating that the sea urchin adjusts its foraging to match the small-scale distribution of food items. A net “preference” for epiphytic food sources was found in northern Norway, where understorey food was limited compared to other regions. We conclude that diet change may occur in response to food source redistribution at multiple spatial scales (microhabitats, sites, regions). Across these scales, the way that key consumers alter their foraging in response to food availability can have important implication for food web dynamics and ecosystem functions along current and future environmental gradients

    Multi-model seascape genomics identifies distinct environmental drivers of selection among sympatric marine species

    Get PDF
    Background As global change and anthropogenic pressures continue to increase, conservation and management increasingly needs to consider species’ potential to adapt to novel environmental conditions. Therefore, it is imperative to characterise the main selective forces acting on ecosystems, and how these may influence the evolutionary potential of populations and species. Using a multi-model seascape genomics approach, we compare putative environmental drivers of selection in three sympatric southern African marine invertebrates with contrasting ecology and life histories: Cape urchin (Parechinus angulosus), Common shore crab (Cyclograpsus punctatus), and Granular limpet (Scutellastra granularis). Results Using pooled (Pool-seq), restriction-site associated DNA sequencing (RAD-seq), and seven outlier detection methods, we characterise genomic variation between populations along a strong biogeographical gradient. Of the three species, only S. granularis showed significant isolation-by-distance, and isolation-by-environment driven by sea surface temperatures (SST). In contrast, sea surface salinity (SSS) and range in air temperature correlated more strongly with genomic variation in C. punctatus and P. angulosus. Differences were also found in genomic structuring between the three species, with outlier loci contributing to two clusters in the East and West Coasts for S. granularis and P. angulosus, but not for C. punctatus. Conclusion The findings illustrate distinct evolutionary potential across species, suggesting that species-specific habitat requirements and responses to environmental stresses may be better predictors of evolutionary patterns than the strong environmental gradients within the region. We also found large discrepancies between outlier detection methodologies, and thus offer a novel multi-model approach to identifying the principal environmental selection forces acting on species. Overall, this work highlights how adding a comparative approach to seascape genomics (both with multiple models and species) can elucidate the intricate evolutionary responses of ecosystems to global change
    • 

    corecore