1,013 research outputs found

    The origin of galaxy scaling laws in LCDM

    Full text link
    It has long been recognized that tight relations link the mass, size, and characteristic velocity of galaxies. These scaling laws reflect the way in which baryons populate, cool, and settle at the center of their host dark matter halos; the angular momentum they retain in the assembly process; as well as the radial distribution and mass scalings of the dark matter halos. There has been steady progress in our understanding of these processes in recent years, mainly as sophisticated N-body and hydrodynamical simulation techniques have enabled the numerical realization of galaxy models of ever increasing complexity, realism, and appeal. These simulations have now clarified the origin of these galaxy scaling laws in a universe dominated by cold dark matter: these relations arise from the tight (but highly non-linear) relations between (i) galaxy mass and halo mass, (ii) galaxy size and halo characteristic radius; and (iii) from the self-similar mass nature of cold dark matter halo mass profiles. The excellent agreement between simulated and observed galaxy scaling laws is a resounding success for the LCDM cosmogony on the highly non-linear scales of individual galaxies.Comment: Contribution to the Proceedings of the Simons Conference "Illuminating Dark Matter", held in Kruen, Germany, in May 2018, eds. R. Essig, K. Zurek, J. Fen

    Genetic Variation in the Complete MgPa Operon and Its Repetitive Chromosomal Elements in Clinical Strains of Mycoplasma genitalium

    Get PDF
    Mycoplasma genitalium has been increasingly recognized as an important microbe not only because of its significant association with human genital tract diseases but also because of its utility as a model for studying the minimum set of genes necessary to sustain life. Despite its small genome, 4.7% of the total genome sequence is devoted to making the MgPa adhesin operon and its nine chromosomal repetitive elements (termed MgPars). The MgPa operon, along with 9 MgPars, is believed to play an important role in pathogenesis of M. genitalium infection and has also served as the main target for development of diagnostic tools. However, genetic variation in the complete MgPa operon and MgPars among clinical strains of M. genitalium has not been addressed. In this study we examined the genetic variation in the complete MgPa operon (approximately 8.5 kb) and full or partial MgPar sequences (0.4–2.6 kb) in 15 geographically diverse strains of M. genitalium. Extensive variation was present in four repeat regions of the MgPa operon (with homology to MgPars) among and within strains while the non-repeat regions (without homology to MgPars) showed low-level variation among strains and no variation within strains. MgPars showed significant variation among strains but were highly homogeneous within strains, supporting gene conversion as the likely recombination mechanism. When applying our sequence data to evaluate published MgPa operon-based diagnostic PCR assays and genotyping systems, we found that 11 of 19 primers contain up to 19 variable nucleotides and that the target for one of two typing systems is located in a hypervariable repeat region, suggesting the likelihood of false results with some of these assays. This study not only provides new insights into the role of the MgPa operon in the pathogenesis of M. genitalium infection but has important implications for the development of diagnostic tools

    Astrocytic Ion Dynamics: Implications for Potassium Buffering and Liquid Flow

    Get PDF
    We review modeling of astrocyte ion dynamics with a specific focus on the implications of so-called spatial potassium buffering, where excess potassium in the extracellular space (ECS) is transported away to prevent pathological neural spiking. The recently introduced Kirchoff-Nernst-Planck (KNP) scheme for modeling ion dynamics in astrocytes (and brain tissue in general) is outlined and used to study such spatial buffering. We next describe how the ion dynamics of astrocytes may regulate microscopic liquid flow by osmotic effects and how such microscopic flow can be linked to whole-brain macroscopic flow. We thus include the key elements in a putative multiscale theory with astrocytes linking neural activity on a microscopic scale to macroscopic fluid flow.Comment: 27 pages, 7 figure

    Conditioning Individual Mosquitoes to an Odor: Sex, Source, and Time

    Get PDF
    Olfactory conditioning of mosquitoes may have important implications for vector-pathogen-host dynamics. If mosquitoes learn about specific host attributes associated with pathogen infection, it may help to explain the heterogeneity of biting and disease patterns observed in the field. Sugar-feeding is a requirement for survival in both male and female mosquitoes. It provides a starting point for learning research in mosquitoes that avoids the confounding factors associated with the observer being a potential blood-host and has the capability to address certain areas of close-range mosquito learning behavior that have not previously been described. This study was designed to investigate the ability of the southern house mosquito, Culex quinquefasciatus Say to associate odor with a sugar-meal with emphasis on important experimental considerations of mosquito age (1.2 d old and 3–5 d old), sex (male and female), source (laboratory and wild), and the time between conditioning and testing (<5 min, 1 hr, 2.5 hr, 5 hr, 10 hr, and 24 hr). Mosquitoes were individually conditioned to an odor across these different experimental conditions. Details of the conditioning protocol are presented as well as the use of binary logistic regression to analyze the complex dataset generated from this experimental design. The results suggest that each of the experimental factors may be important in different ways. Both the source of the mosquitoes and sex of the mosquitoes had significant effects on conditioned responses. The largest effect on conditioning was observed in the lack of positive response following conditioning for females aged 3–5 d derived from a long established colony. Overall, this study provides a method for conditioning experiments involving individual mosquitoes at close range and provides for future discussion of the relevance and broader questions that can be asked of olfactory conditioning in mosquitoes

    Human and murine clonal CD8+ T cell expansions arise during tuberculosis because of TCR selection

    Get PDF
    The immune system can recognize virtually any antigen, yet T cell responses against several pathogens, including Mycobacterium tuberculosis, are restricted to a limited number of immunodominant epitopes. The host factors that affect immunodominance are incompletely understood. Whether immunodominant epitopes elicit protective CD8+ T cell responses or instead act as decoys to subvert immunity and allow pathogens to establish chronic infection is unknown. Here we show that anatomically distinct human granulomas contain clonally expanded CD8+ T cells with overlapping T cell receptor (TCR) repertoires. Similarly, the murine CD8+ T cell response against M. tuberculosis is dominated by TB10.44-11-specific T cells with extreme TCRß bias. Using a retro genic model of TB10.44-11-specific CD8+ Tcells, we show that TCR dominance can arise because of competition between clonotypes driven by differences in affinity. Finally, we demonstrate that TB10.4-specific CD8+ T cells mediate protection against tuberculosis, which requires interferon-? production and TAP1-dependent antigen presentation in vivo. Our study of how immunodominance, biased TCR repertoires, and protection are inter-related, provides a new way to measure the quality of T cell immunity, which if applied to vaccine evaluation, could enhance our understanding of how to elicit protective T cell immunity.This work was supported by the Portuguese Foundation for Science and Technology individual fellowship (CNA) www.fct.pt, a National Institutes of Health Grant R01 AI106725 (SMB) www.nih.gov, and a Center for AIDS Research Grant P30 AI 060354 (SMB) www.nih.gov. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Justice, culture and the political determinants of indigenous Australian health

    Get PDF
    Indigenous Australian health is distinguished by a median age of death in the order of 20 years less than that of the non-indigenous population (Australian Bureau of Statistics, 2009). This makes Australia unique among comparable post-colonial societies in failing to make substantive reductions to the indigenous/non-indigenous health differential. Relatively poor indigenous housing, educational attainment, labour market participation and access to traditional resources for economic purposes contribute to the differen- tial. These contributing variables have an inherently political character which is integral to examining the just distribution of public authority, the purpose of political activity, equal political participation and cultural responsiveness in the provision of health ser- vices as important theoretical considerations in reducing cross-cultural inequities in the burden of disease

    The Course of Habituation of the Proboscis Extension Reflex Can Be Predicted by Sucrose Responsiveness in Drosophila

    Get PDF
    The proboscis extension reflex (PER) is triggered when insects’ gustatory receptors contact appetitive stimuli, so it provides a behavioral readout for perceptual encoding of tastants. Research on the experience dependent modulation of PER in Drosophila has been hindered by the difficulty of obtaining reliable measures of memory-driven change in PER probability in the background of larger changes induced by physiological state. In this study, we showed that the course of PER habituation can be predicted by the degree of sucrose responsiveness in Drosophila. We assessed early response parameters, including the number of proboscis extensions and labellar movements in the first five trials, the trial to start responding, and the trial to make the first stop to quantify responsiveness, which predicted the upcoming pattern of both the short-term and 1 hour memory of PER habituation for individual flies. The cAMP signaling pathway mutant rutabaga displayed deficits in attunement of perceptual salience of sucrose to physiological demands and stimulus-driven sensitization

    Measurement of the Forward-Backward Asymmetry in the B -> K(*) mu+ mu- Decay and First Observation of the Bs -> phi mu+ mu- Decay

    Get PDF
    We reconstruct the rare decays B+K+μ+μB^+ \to K^+\mu^+\mu^-, B0K(892)0μ+μB^0 \to K^{*}(892)^0\mu^+\mu^-, and Bs0ϕ(1020)μ+μB^0_s \to \phi(1020)\mu^+\mu^- in a data sample corresponding to 4.4fb14.4 {\rm fb^{-1}} collected in ppˉp\bar{p} collisions at s=1.96TeV\sqrt{s}=1.96 {\rm TeV} by the CDF II detector at the Fermilab Tevatron Collider. Using 121±16121 \pm 16 B+K+μ+μB^+ \to K^+\mu^+\mu^- and 101±12101 \pm 12 B0K0μ+μB^0 \to K^{*0}\mu^+\mu^- decays we report the branching ratios. In addition, we report the measurement of the differential branching ratio and the muon forward-backward asymmetry in the B+B^+ and B0B^0 decay modes, and the K0K^{*0} longitudinal polarization in the B0B^0 decay mode with respect to the squared dimuon mass. These are consistent with the theoretical prediction from the standard model, and most recent determinations from other experiments and of comparable accuracy. We also report the first observation of the Bs0ϕμ+μdecayandmeasureitsbranchingratioB^0_s \to \phi\mu^+\mu^- decay and measure its branching ratio {\mathcal{B}}(B^0_s \to \phi\mu^+\mu^-) = [1.44 \pm 0.33 \pm 0.46] \times 10^{-6}using using 27 \pm 6signalevents.Thisiscurrentlythemostrare signal events. This is currently the most rare B^0_s$ decay observed.Comment: 7 pages, 2 figures, 3 tables. Submitted to Phys. Rev. Let
    corecore