156 research outputs found

    Rac1 drives intestinal stem cell proliferation and regeneration

    Get PDF
    Adult stem cells are responsible for maintaining the balance between cell proliferation and differentiation within self-renewing tissues. The molecular and cellular mechanisms mediating such balance are poorly understood. The production of reactive oxygen species (ROS) has emerged as an important mediator of stem cell homeostasis in various systems. Our recent work demonstrates that Rac1-dependent ROS production mediates intestinal stem cell (ISC) proliferation in mouse models of colorectal cancer (CRC). Here, we use the adult Drosophila midgut and the mouse small intestine to directly address the role of Rac1 in ISC proliferation and tissue regeneration in response to damage. Our results demonstrate that Rac1 is necessary and sufficient to drive ISC proliferation and regeneration in an ROS-dependent manner. Our data point to an evolutionarily conserved role of Rac1 in intestinal homeostasis and highlight the value of combining work in the mammalian and Drosophila intestine as paradigms to study stem cell biology

    Environmental changes in oxygen tension reveal ROS-dependent neurogenesis and regeneration in the adult newt brain

    Get PDF
    Acknowledgements: We thank A Elewa, N Dantuma, C Sjögren for many helpful comments on the manuscript, and H Wang and M Kirkham for advice. This work was supported by grants from the European Research Council, Swedish Research Council, Swedish Cancer Society, AFA Insurances to AS. YC´s laboratory is supported by research grants from the Swedish Research Council, the Swedish Cancer Foundation, the Karolinska Institute Foundation, the Karolinska Institute distinguished professor award, the Torsten Soderbergs foundation, the NOVO Nordisk Foundation, the Advanced grant from the NOVO Nordisk foundation, and the Alice Wallenberg foundation This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.Peer reviewedPublisher PD

    Agouti protein, mahogunin, and attractin in pheomelanogenesis and melanoblast-like alteration of melanocytes: a cAMP-independent pathway

    Get PDF
    Melanocortin-1 receptor (MC1R) and its ligands, α-melanocyte stimulating hormone (αMSH) and agouti signaling protein (ASIP), regulate switching between eumelanin and pheomelanin synthesis in melanocytes. Here we investigated biological effects and signaling pathways of ASIP. Melan-a non agouti (a/a) mouse melanocytes produce mainly eumelanin, but ASIP combined with phenylthiourea and extra cysteine could induce over 200-fold increases in the pheomelanin to eumelanin ratio, and a tan-yellow color in pelletted cells. Moreover, ASIP-treated cells showed reduced proliferation and a melanoblast-like appearance, seen also in melanocyte lines from yellow (Ay/a and Mc1re/ Mc1re) mice. However ASIP-YY, a C-terminal fragment of ASIP, induced neither biological nor pigmentary changes. As, like ASIP, ASIP-YY inhibited the cAMP rise induced by αMSH analog NDP-MSH, and reduced cAMP level without added MSH, the morphological changes and depigmentation seemed independent of cAMP signaling. Melanocytes genetically null for ASIP mediators attractin or mahogunin (Atrnmg-3J/mg-3J or Mgrn1md-nc/md-nc) also responded to both ASIP and ASIP-YY in cAMP level, while only ASIP altered their proliferation and (in part) shape. Thus, ASIP–MC1R signaling includes a cAMP-independent pathway through attractin and mahogunin, while the known cAMP-dependent component requires neither attractin nor mahogunin

    Early onset obesity and adrenal insufficiency associated with a homozygous POMC mutation

    Get PDF
    Isolated hypocortisolism due to ACTH deficiency is a rare condition that can be caused by homozygous or compound heterozygous mutations in the gene encoding proopiomelanocortin (POMC). Loss of function mutations of POMC gene typically results in adrenal insufficiency, obesity and red hair. We describe an 18 month old Hispanic female with congenital adrenal insufficiency, a novel POMC mutation and atypical clinical features. The patient presented at the age of 9 months with hypoglycemia and the endocrine evaluation resulted in a diagnosis of ACTH deficiency. She developed extreme weight gain prompting sequence analysis of POMC, which revealed a homozygous c.231C > A change which is predicted to result in a premature termination codon. The case we report had obesity, hypocortisolism but lacked red hair which is typical for subjects with POMC mutations. Mutations of POMC should be considered in individuals with severe early onset obesity and adrenal insufficiency even when they lack the typical pigmentary phenotype

    Divergent Modulation of Neuronal Differentiation by Caspase-2 and -9

    Get PDF
    Human Ntera2/cl.D1 (NT2) cells treated with retinoic acid (RA) differentiate towards a well characterized neuronal phenotype sharing many features with human fetal neurons. In view of the emerging role of caspases in murine stem cell/neural precursor differentiation, caspases activity was evaluated during RA differentiation. Caspase-2, -3 and -9 activity was transiently and selectively increased in differentiating and non-apoptotic NT2-cells. SiRNA-mediated selective silencing of either caspase-2 (si-Casp2) or -9 (si-Casp9) was implemented in order to dissect the role of distinct caspases. The RA-induced expression of neuronal markers, i.e. neural cell adhesion molecule (NCAM), microtubule associated protein-2 (MAP2) and tyrosine hydroxylase (TH) mRNAs and proteins, was decreased in si-Casp9, but markedly increased in si-Casp2 cells. During RA-induced NT2 differentiation, the class III histone deacetylase Sirt1, a putative caspase substrate implicated in the regulation of the proneural bHLH MASH1 gene expression, was cleaved to a ∼100 kDa fragment. Sirt1 cleavage was markedly reduced in si-Casp9 cells, even though caspase-3 was normally activated, but was not affected (still cleaved) in si-Casp2 cells, despite a marked reduction of caspase-3 activity. The expression of MASH1 mRNA was higher and occurred earlier in si-Casp2 cells, while was reduced at early time points during differentiation in si-Casp9 cells. Thus, caspase-2 and -9 may perform opposite functions during RA-induced NT2 neuronal differentiation. While caspase-9 activation is relevant for proper neuronal differentiation, likely through the fine tuning of Sirt1 function, caspase-2 activation appears to hinder the RA-induced neuronal differentiation of NT2 cells

    Invasive cells in animals and plants: searching for LECA machineries in later eukaryotic life

    Full text link

    Prostaglandin production by melanocytic cells and the effect of a-melanocyte stimulating hormone

    Get PDF
    NoProstaglandins are potent mediators of the inflam-matory response and are also involved in cancer development. In this study, we show that human melanocytes and FM55 melanoma cells express cyclooxygenase-1 and -2 (COX-1 and-2) and thus have the capability to produce prostaglandins. TheFM55 cells produced predominantly PGE2and PGF2a, whereas the HaCaT keratinocyte cell line produced mainly PGE2. The anti-inflammatory peptide, a-melanocyte stimulating hormone(a-MSH), reduced prostaglandin production in FM55 and HaCaT cells and reversed the effect of the pro-inflammatory cytokine TNF-a in the former. These results indicate that melanocytes produce prostaglandins and that a-MSH, by inhibiting this response, may play an important role in regulating inflammatory responses in the skin
    corecore