16 research outputs found

    In vivo structure of the Legionella type II secretion system by electron cryotomography

    Get PDF
    The type II secretion system (T2SS) is a multiprotein envelope-spanning assembly that translocates a wide range of virulence factors, enzymes and effectors through the outer membrane of many Gram-negative bacteria. Here, using electron cryotomography and subtomogram averaging methods, we reveal the in vivo structure of an intact T2SS imaged within the human pathogen Legionella pneumophila. Although the T2SS has only limited sequence and component homology with the evolutionarily related type IV pilus (T4P) system, we show that their overall architectures are remarkably similar. Despite similarities, there are also differences, including, for example, that the T2SS–ATPase complex is usually present but disengaged from the inner membrane, the T2SS has a much longer periplasmic vestibule and it has a short-lived flexible pseudopilus. Placing atomic models of the components into our electron cryotomography map produced a complete architectural model of the intact T2SS that provides insights into the structure and function of its components, its position within the cell envelope and the interactions between its different subcomplexes

    In vivo structure of the Legionella type II secretion system by electron cryotomography

    Get PDF
    The type II secretion system (T2SS) is a multiprotein envelope-spanning assembly that translocates a wide range of virulence factors, enzymes and effectors through the outer membrane of many Gram-negative bacteria. Here, using electron cryotomography and subtomogram averaging methods, we reveal the in vivo structure of an intact T2SS imaged within the human pathogen Legionella pneumophila. Although the T2SS has only limited sequence and component homology with the evolutionarily related type IV pilus (T4P) system, we show that their overall architectures are remarkably similar. Despite similarities, there are also differences, including, for example, that the T2SS–ATPase complex is usually present but disengaged from the inner membrane, the T2SS has a much longer periplasmic vestibule and it has a short-lived flexible pseudopilus. Placing atomic models of the components into our electron cryotomography map produced a complete architectural model of the intact T2SS that provides insights into the structure and function of its components, its position within the cell envelope and the interactions between its different subcomplexes

    Anaplasma phagocytophilum MSP4 and HSP70 proteins are involved in interactions with host cells during pathogen infection

    Get PDF
    Anaplasma phagocytophilum transmembrane and surface proteins play a role during infection and multiplication in host neutrophils and tick vector cells. Recently, A. phagocytophilum Major surface protein 4 (MSP4) and Heat shock protein 70 (HSP70) were shown to be localized on the bacterial membrane, with a possible role during pathogen infection in ticks. In this study, we hypothesized that A. phagocytophilum MSP4 and HSP70 have similar functions in tick-pathogen and host-pathogen interactions. To address this hypothesis, herein we characterized the role of these bacterial proteins in interaction and infection of vertebrate host cells. The results showed that A. phagocytophilum MSP4 and HSP70 are involved in host-pathogen interactions, with a role for HSP70 during pathogen infection. The analysis of the potential protective capacity of MSP4 and MSP4-HSP70 antigens in immunized sheep showed that MSP4-HSP70 was only partially protective against pathogen infection. This limited protection may be associated with several factors, including the recognition of non-protective epitopes by IgG in immunized lambs. Nevertheless, these antigens may be combined with other candidate protective antigens for the development of vaccines for the control of human and animal granulocytic anaplasmosis. Focusing on the characterization of host protective immune mechanisms and protein-protein interactions at the host-pathogen interface may lead to the discovery and design of new effective protective antigens.Peer reviewedVeterinary Pathobiolog

    You Needed Me, You Needed Me : Symposium of Art

    No full text

    In vivo structure of the Legionella type II secretion system by electron cryotomography.

    No full text
    The type II secretion system (T2SS) is a multiprotein envelope-spanning assembly that translocates a wide range of virulence factors, enzymes and effectors through the outer membrane of many Gram-negative bacteria1-3. Here, using electron cryotomography and subtomogram averaging methods, we reveal the in vivo structure of an intact T2SS imaged within the human pathogen Legionella pneumophila. Although the T2SS has only limited sequence and component homology with the evolutionarily related type IV pilus (T4P) system4,5, we show that their overall architectures are remarkably similar. Despite similarities, there are also differences, including, for example, that the T2SS-ATPase complex is usually present but disengaged from the inner membrane, the T2SS has a much longer periplasmic vestibule and it has a short-lived flexible pseudopilus. Placing atomic models of the components into our electron cryotomography map produced a complete architectural model of the intact T2SS that provides insights into the structure and function of its components, its position within the cell envelope and the interactions between its different subcomplexes

    Paper Wait : A Collection of Response

    No full text
    Pulication contains texts by 10 authors, written in response to exhibitions, residencies, and performances presented at Ace Art between 1995-99. A wide range of issues are discussed in relation to the artists' works, such as the body, gender, scatology, book making and curatorial practice. Includes poems by S. Legris based on 8 artist's books. Listing of Ace Art Books and upcoming events. Biographical notes. 28 bibl. ref

    Structure and anisotropy of the Mexico subduction zone based on Rayleigh-wave analysis and implications for the geometry of the Trans-Mexican Volcanic Belt

    No full text
    We develop a three-dimensional model of shear wave velocity and anisotropy for the Mexico subduction zone using Rayleigh wave phase velocity dispersion measurements. This region is characterized by both steep and flat subduction and a volcanic arc that appears to be oblique to the trench. We give a new interpretation of the volcanic arc obliqueness and the location of the Tzitzio gap in volcanism based on the subduction morphology. We employ the two-station method to measure Rayleigh phase velocity dispersion curves between periods of 16 s to 171 s. The results are then inverted to obtain azimuthally anisotropic phase velocity maps and to model 3-D variations in upper mantle velocity and anisotropy. Our maps reveal lateral variations in phase velocity at all periods, consistent with the presence of flat and steep subduction. We also find that the data are consistent with two layers of anisotropy beneath Mexico: a crustal layer, with the fast directions parallel to the North American absolute plate motion, and a deeper layer that includes the mantle lithosphere and the asthenosphere, with the fast direction interpreted in terms of toroidal mantle flow around the slab edges. Our combined azimuthal anisotropy and velocity model enables us to analyze the transition from flat to steep subduction and to determine whether the transition involves a tear resulting in a gap between segments or is a continuous deformation caused by a lithospheric flexure. Our anisotropy results favor a tear, which is also consistent with the geometry of the volcanic belt. Copyright 2012 by the American Geophysical Union
    corecore