37 research outputs found
Distribution of Mesoscale Convective Complex Rainfall in the United States
Several annual mesoscale convective complex (MCC) summaries have been compiled since Maddox strictly
defined their criteria in 1980. These previous studies have largely been independent of each other and therefore
have not established the extended spatial and temporal patterns associated with these large, quasi-circular, and,
typically, severe convective systems. This deficiency is primarily due to the difficulty of archiving enough
satellite imagery to accurately record each MCC based on Maddox’s criteria. Consequently, this study utilizes
results from each of the MCC summaries compiled between 1978 and 1999 for the United States in order to
develop a more complete climatology, or description of long-term means and interannual variation, of these
storms. Within the 22-yr period, MCC summaries were compiled for a total of 15 yr. These 15 yr of MCC data
are employed to establish estimated tracks for all MCCs documented and, thereafter, are utilized to determine
MCC populations on a monthly, seasonal, annual, and multiyear basis. Subsequent to developing an extended
climatology of MCCs, the study ascertains the spatial and temporal patterns of MCC rainfall and determines
the precipitation contributions made by MCCs over the central and eastern United States. Results indicate that
during the warm season, significant portions of the Great Plains receive, on average, between 8% and 18% of
their total precipitation from MCC rainfall. However, there is large yearly and even monthly variability in the
location and frequency of MCC events that leads to highly variable precipitation contributions
Interplay of quantum and thermal fluctuations in a frustrated magnet
We demonstrate the presence of an extended critical phase in the transverse
field Ising magnet on the triangular lattice, in a regime where both thermal
and quantum fluctuations are important. We map out a complete phase diagram by
means of quantum Monte Carlo simulations, and find that the critical phase is
the result of thermal fluctuations destabilising an order established by the
quantum fluctuations. It is separated by two Kosterlitz-Thouless transitions
from the paramagnet on one hand and the quantum-fluctuation driven
three-sublattice ordered phase on the other. Our work provides further evidence
that the zero temperature quantum phase transition is in the 3d XY universality
class.Comment: 9 pages, revtex
Random Series and Discrete Path Integral methods: The Levy-Ciesielski implementation
We perform a thorough analysis of the relationship between discrete and
series representation path integral methods, which are the main numerical
techniques used in connection with the Feynman-Kac formula. First, a new
interpretation of the so-called standard discrete path integral methods is
derived by direct discretization of the Feynman-Kac formula. Second, we
consider a particular random series technique based upon the Levy-Ciesielski
representation of the Brownian bridge and analyze its main implementations,
namely the primitive, the partial averaging, and the reweighted versions. It is
shown that the n=2^k-1 subsequence of each of these methods can also be
interpreted as a discrete path integral method with appropriate short-time
approximations. We therefore establish a direct connection between the discrete
and the random series approaches. In the end, we give sharp estimates on the
rates of convergence of the partial averaging and the reweighted
Levy-Ciesielski random series approach for sufficiently smooth potentials. The
asymptotic rates of convergence are found to be O(1/n^2), in agreement with the
rates of convergence of the best standard discrete path integral techniques.Comment: 20 pages, 4 figures; the two equations before Eq. 14 are corrected;
other typos are remove
Review Section : Nature/Nurture Revisited I
Biologically oriented approaches to the study of human conflict have thus far been limited largely to the study of aggression. A sample of the literature on this topic is reviewed, drawing upon four major approaches: comparative psychology, ethology (including some popularized accounts), evolutionary-based theories, and several areas of human physiology. More sophisticated relationships between so-called "innate" and "acquired" determinants of behavior are discussed, along with the proper relevance of animal behavior studies for human behavior. Unless contained in a comprehensive theory which includes social and psychological variables, biolog ically oriented theories (although often valid within their domain) offer at best severely limited and at worst highly misleading explanations of complex social conflicts. The review concludes with a list of several positive contributions of these biological approaches and suggests that social scientists must become more knowledgeable about them.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68270/2/10.1177_002200277401800206.pd
Delivering 21st century Antarctic and Southern Ocean science
The Antarctic Roadmap Challenges (ARC) project identified critical requirements to deliver high priority Antarctic research in the 21st century. The ARC project addressed the challenges of enabling technologies, facilitating access, providing logistics and infrastructure, and capitalizing on international co-operation. Technological requirements include: i) innovative automated in situ observing systems, sensors and interoperable platforms (including power demands), ii) realistic and holistic numerical models, iii) enhanced remote sensing and sensors, iv) expanded sample collection and retrieval technologies, and v) greater cyber-infrastructure to process ‘big data’ collection, transmission and analyses while promoting data accessibility. These technologies must be widely available, performance and reliability must be improved and technologies used elsewhere must be applied to the Antarctic. Considerable Antarctic research is field-based, making access to vital geographical targets essential. Future research will require continent- and ocean-wide environmentally responsible access to coastal and interior Antarctica and the Southern Ocean. Year-round access is indispensable. The cost of future Antarctic science is great but there are opportunities for all to participate commensurate with national resources, expertise and interests. The scope of future Antarctic research will necessitate enhanced and inventive interdisciplinary and international collaborations. The full promise of Antarctic science will only be realized if nations act together
Geographical and temporal distribution of SARS-CoV-2 clades in the WHO European Region, January to June 2020
We show the distribution of SARS-CoV-2 genetic clades over time and between countries and outline potential genomic surveillance objectives. We applied three available genomic nomenclature systems for SARS-CoV-2 to all sequence data from the WHO European Region available during the COVID-19 pandemic until 10 July 2020. We highlight the importance of real-time sequencing and data dissemination in a pandemic situation. We provide a comparison of the nomenclatures and lay a foundation for future European genomic surveillance of SARS-CoV-2.Peer reviewe
The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance
INTRODUCTION
Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic.
RATIONALE
We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs).
RESULTS
Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants.
CONCLUSION
Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century