24 research outputs found

    Electron energy states and miniband parameters in a class of non-uniform quantum well and superlattice structures

    Full text link
    A simple method to compute the carrier energy states, miniband parameters and dispersion characteristics for single and multiple quantum well and superlattice structures is presented. The method utilizes the continuity of the envelope function across the heterojunctions according to the boundary conditions that both the wavefunction [psi] and the particle current density [psi]'/m* be continuous at each interface. The nonuniform potential distribution encountered in doped or compositionally graded materials is approximated by piecewise constant potential functions. In addition to being conceptually simple, the method is readily adopted to fairly complex structures where other more sophisticated methods such as LCAO, reduced Hamiltonian and tight binding theories may become unfeasible or unmanageable. It is shown that for an arbitrary stepped potential variation, the eigenvalues (or the energy states) of quantum wells or a finite number of coupled quantum wells can be found by utilizing a transverse resonance method which is readily implemented on a digital computer for the computation of these eigenvalues. For the case of periodic superlattices, the miniband parameters and the dispersion characteristics are computed from a suitably defined transmission matrix associated with a unit cell of the superlattice which may itself consist of multiple layers. Typical results for the computed parameters for several wells and simple, biperiodic, binary and polytype superlattices consisting of various AlxGa1-xAs and InxGa1-xAs alloys are presented.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/25821/1/0000384.pd

    Enhanced Production of Recombinant Extractable Antigen (EA1) an Extracellular Protein and its use in Detection of Spores of Bacillus anthracis the Causative Agent of Anthrax

    Get PDF
    Detection of spores of Bacillus anthracis, the causative agent of anthrax in human and animals in environment is cumbersome due to the presence of spores of other closely related Bacillus species. The Extractable Antigen 1 (EA1), an extracellular protein is considered as a biomarker for detection of B. anthracis spores. In the present work, we have cloned and expressed the recombinant EA1 protein in soluble form in Escherichia coli. Optimisation of culture conditions and cultivation media was carried out to achieve enhanced soluble expression of recombinant EA1 protein. Further, the batch fermentation process was also developed using optimised conditions for scale up production of recombinant EA1 protein. The final yield of protein purified employing affinity chromatography was 42.64 mg/l of culture during batch fermentation process. The polyclonal antibodies were raised against recombinant EA in rabbit and mice and used to develop an ELISA for detection of B. anthracis spores. The specificity of the developed assay was ascertained with spores of other Bacillus species. The results corroborated that the EA1 could be a suitable biomarker for detection of B. anthracis spores

    Production and Purification of Protective Antigen of Bacillus anthracis and Development of a Sandwich ELISA for its Detection

    Get PDF
    Anthrax, a zoonotic disease caused by Bacillus anthracis is important for biowarfare as well as public health point of view. The virulence factors of B. anthracis are encoded by the two plasmids, pXO1 and pXO2. Protective antigen (PA), an 83 kDa protein encoded by pXO1 along with lethal factor (LF, 90 kDa) or edema factor (EF, 89 kDa), makes the anthrax toxin responsible for causing the disease. Current detection and diagnostic systems for anthrax are mostly based on PA, a potential biomarker of B. anthracis. The objective of the present study was to produce and purify the PA for development of a sandwich ELISA for its detection. In this study, pYS5 plasmid containing the full PA gene was transformed into an 8 proteases deficient Bacillus anthracis host BH480. The PA was produced under shake flask conditions and purified using the gel filtration chromatography. The reactivity of PA with rabbit and mouse anti-PA antibodies was confirmed by Western blotting. The antibodies were purified and used for the development of a sandwich ELISA for detection of PA. The detection sensitivity of ELISA was found to be 3.9 ng/ mL PA

    Copy number variants as modifiers of breast cancer risk for BRCA1/BRCA2 pathogenic variant carriers

    Get PDF
    The risk of germline copy number variants (CNVs) in BRCA1 and BRCA2 pathogenic variant carriers in breast cancer is assessed, with CNVs overlapping SULT1A1 decreasing breast cancer risk in BRCA1 carriers.The contribution of germline copy number variants (CNVs) to risk of developing cancer in individuals with pathogenic BRCA1 or BRCA2 variants remains relatively unknown. We conducted the largest genome-wide analysis of CNVs in 15,342 BRCA1 and 10,740 BRCA2 pathogenic variant carriers. We used these results to prioritise a candidate breast cancer risk-modifier gene for laboratory analysis and biological validation. Notably, the HR for deletions in BRCA1 suggested an elevated breast cancer risk estimate (hazard ratio (HR) = 1.21), 95% confidence interval (95% CI = 1.09-1.35) compared with non-CNV pathogenic variants. In contrast, deletions overlapping SULT1A1 suggested a decreased breast cancer risk (HR = 0.73, 95% CI 0.59-0.91) in BRCA1 pathogenic variant carriers. Functional analyses of SULT1A1 showed that reduced mRNA expression in pathogenic BRCA1 variant cells was associated with reduced cellular proliferation and reduced DNA damage after treatment with DNA damaging agents. These data provide evidence that deleterious variants in BRCA1 plus SULT1A1 deletions contribute to variable breast cancer risk in BRCA1 carriers.Peer reviewe

    Breast and Prostate Cancer Risks for Male BRCA1 and BRCA2 Pathogenic Variant Carriers Using Polygenic Risk Scores

    Get PDF
    Background: Recent population-based female breast cancer and prostate cancer polygenic risk scores (PRS) have been developed. We assessed the associations of these PRS with breast and prostate cancer risks for male BRCA1 and BRCA2 pathogenic variant carriers. Methods: 483 BRCA1 and 1318 BRCA2 European ancestry male carriers were available from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). A 147-single nucleotide polymorphism (SNP) prostate cancer PRS (PRSPC) and a 313-SNP breast cancer PRS were evaluated. There were 3 versions of the breast cancer PRS, optimized to predict overall (PRSBC), estrogen receptor (ER)-negative (PRSER-), or ER-positive (PRSER+) breast cancer risk. Results: PRSER+ yielded the strongest association with breast cancer risk. The odds ratios (ORs) per PRSER+ standard deviation estimates were 1.40 (95% confidence interval [CI] =1.07 to 1.83) for BRCA1 and 1.33 (95% CI = 1.16 to 1.52) for BRCA2 carriers. PRSPC was associated with prostate cancer risk for BRCA1 (OR = 1.73, 95% CI = 1.28 to 2.33) and BRCA2 (OR = 1.60, 95% CI = 1.34 to 1.91) carriers. The estimated breast cancer odds ratios were larger after adjusting for female relative breast cancer family history. By age 85 years, for BRCA2 carriers, the breast cancer risk varied from 7.7% to 18.4% and prostate cancer risk from 34.1% to 87.6% between the 5th and 95th percentiles of the PRS distributions. Conclusions: Population-based prostate and female breast cancer PRS are associated with a wide range of absolute breast and prostate cancer risks for male BRCA1 and BRCA2 carriers. These findings warrant further investigation aimed at providing personalized cancer risks for male carriers and informing clinical management.Peer reviewe

    Identification of a BRCA2-Specific modifier locus at 6p24 related to breast cancer risk

    Get PDF
    Common genetic variants contribute to the observed variation in breast cancer risk for BRCA2 mutation carriers; those known to date have all been found through population-based genome-wide association studies (GWAS). To comprehensively identify breast cancer risk modifying loci for BRCA2 mutation carriers, we conducted a deep replication of an ongoing GWAS discovery study. Using the ranked P-values of the breast cancer associations with the imputed genotype of 1.4 M SNPs, 19,029 SNPs were selected and designed for inclusion on a custom Illumina array that included a total of 211,155 SNPs as part of a multi-consortial project. DNA samples from 3,881 breast cancer affected and 4,330 unaffected BRCA2 mutation carriers from 47 studies belonging to the Consortium of Investigators of Modifiers of BRCA1/2 were genotyped and available for analysis. We replicated previously reported breast cancer susceptibility alleles in these BRCA2 mutation carriers and for several regions (including FGFR2, MAP3K1, CDKN2A/B, and PTHLH) identified SNPs that have stronger evidence of association than those previously published. We also identified a novel susceptibility allele at 6p24 that was inversely associated with risk in BRCA2 mutation carriers (rs9348512; per allele HR = 0.85, 95% CI 0.80-0.90, P = 3.9×10−8). This SNP was not associated with breast cancer risk either in the general population or in BRCA1 mutation carriers. The locus lies within a region containing TFAP2A, which encodes a transcriptional activation protein that interacts with several tumor suppressor genes. This report identifies the first breast cancer risk locus specific to a BRCA2 mutation background. This comprehensive update of novel and previously reported breast cancer susceptibility loci contributes to the establishment of a panel of SNPs that modify breast cancer risk in BRCA2 mutation carriers. This panel may have clinical utility for women with BRCA2 mutations weighing options for medical prevention of breast cancer

    Genome-Wide Association Study in BRCA1 Mutation Carriers Identifies Novel Loci Associated with Breast and Ovarian Cancer Risk

    Get PDF
    BRCA1-associated breast and ovarian cancer risks can be modified by common genetic variants. To identify further cancer risk-modifying loci, we performed a multi-stage GWAS of 11,705 BRCA1 carriers (of whom 5,920 were diagnosed with breast and 1,839 were diagnosed with ovarian cancer), with a further replication in an additional sample of 2,646 BRCA1 carriers. We identified a novel breast cancer risk modifier locus at 1q32 for BRCA1 carriers (rs2290854, P = 2.7×10-8, HR = 1.14, 95% CI: 1.09-1.20). In addition, we identified two novel ovarian cancer risk modifier loci: 17q21.31 (rs17631303, P = 1.4×10-8, HR = 1.27, 95% CI: 1.17-1.38) and 4q32.3 (rs4691139, P = 3.4×10-8, HR = 1.20, 95% CI: 1.17-1.38). The 4q32.3 locus was not associated with ovarian cancer risk in the general population or BRCA2 carriers, suggesting a BRCA1-specific associat

    An original phylogenetic approach identified mitochondrial haplogroup T1a1 as inversely associated with breast cancer risk in BRCA2 mutation carriers

    Get PDF
    Introduction: Individuals carrying pathogenic mutations in the BRCA1 and BRCA2 genes have a high lifetime risk of breast cancer. BRCA1 and BRCA2 are involved in DNA double-strand break repair, DNA alterations that can be caused by exposure to reactive oxygen species, a main source of which are mitochondria. Mitochondrial genome variations affect electron transport chain efficiency and reactive oxygen species production. Individuals with different mitochondrial haplogroups differ in their metabolism and sensitivity to oxidative stress. Variability in mitochondrial genetic background can alter reactive oxygen species production, leading to cancer risk. In the present study, we tested the hypothesis that mitochondrial haplogroups modify breast cancer risk in BRCA1/2 mutation carriers. Methods: We genotyped 22,214 (11,421 affected, 10,793 unaffected) mutation carriers belonging to the Consortium of Investigators of Modifiers of BRCA1/2 for 129 mitochondrial polymorphisms using the iCOGS array. Haplogroup inference and association detection were performed using a phylogenetic approach. ALTree was applied to explore the reference mitochondrial evolutionary tree and detect subclades enriched in affected or unaffected individuals. Results: We discovered that subclade T1a1 was depleted in affected BRCA2 mutation carriers compared with the rest of clade T (hazard ratio (HR) = 0.55; 95% confidence interval (CI), 0.34 to 0.88; P = 0.01). Compared with the most frequent haplogroup in the general population (that is, H and T clades), the T1a1 haplogroup has a HR of 0.62 (95% CI, 0.40 to 0.95; P = 0.03). We also identified three potential susceptibility loci, including G13708A/rs28359178, which has demonstrated an inverse association with familial breast cancer risk. Conclusions: This study illustrates how original approaches such as the phylogeny-based method we used can empower classical molecular epidemiological studies aimed at identifying association or risk modification effects.Peer reviewe

    Emerging Optoelectronic Technologies

    No full text
    corecore