23 research outputs found

    Multi-Wavelength Surveys of Extreme Infrared Populations

    No full text
    This Thesis presents a study of galaxies and quasars from the viewpoint of their optical, infrared and X-ray properties by combining optical data from Gemini and WIYN with near to far-IR and optical data from the SWIRE survey and X-ray data from Chandra. This work represents the largest existing optical spectroscopic survey in ELAIS-N1 with ∜300 reliable spectroscopic redshifts and the largest Xray survey, in the same field, which has extended the previous X-ray coverage in ELAIS-N1 by a factor of 12 and has detected more than 600 X-ray sources. Optical spectroscopy is used both to calibrate photometric redshift techniques and distinguish between star forming galaxies and quasars. The merged X-ray, optical and infrared catalogue is used to determine spectral energy distributions and correctly identify and characterize AGN, star forming galaxies and the link between black hole growth and star formation in the host galaxy

    A Population of Dust-rich Quasars at z ~ 1.5

    Get PDF
    We report Herschel SPIRE (250, 350, and 500 ÎŒm) detections of 32 quasars with redshifts 0.5 ≀z < 3.6 from the Herschel Multi-tiered Extragalactic Survey (HerMES). These sources are from a MIPS 24 ÎŒm flux-limited sample of 326 quasars in the Lockman Hole Field. The extensive multi-wavelength data available in the field permit construction of the rest-frame spectral energy distributions (SEDs) from ultraviolet to the mid-infrared for all sources, and to the far-infrared (FIR) for the 32 objects. Most quasars with Herschel FIR detections show dust temperatures in the range of 25-60 K, with a mean of 34 K. The FIR luminosities range from 10^(11.3) to 10^(13.5) L_☉, qualifying most of their hosts as ultra- or hyper-luminous infrared galaxies. These FIR-detected quasars may represent a dust-rich population, but with lower redshifts and fainter luminosities than quasars observed at ~1 mm. However, their FIR properties cannot be predicted from shorter wavelengths (0.3-20 ÎŒm, rest frame), and the bolometric luminosities derived using the 5100 Å index may be underestimated for these FIR-detected quasars. Regardless of redshift, we observed a decline in the relative strength of FIR luminosities for quasars with higher near-infrared luminosities

    The Chandra Multi-Wavelength Project: Optical Spectroscopy and the Broadband Spectral Energy Distributions of X-ray Selected AGN

    Get PDF
    From optical spectroscopy of X-ray sources observed as part of ChaMP, we present redshifts and classifications for a total of 1569 Chandra sources from our targeted spectroscopic follow up using the FLWO, SAAO, WIYN, CTIO, KPNO, Magellan, MMT and Gemini telescopes, and from archival SDSS spectroscopy. We classify the optical counterparts as 50% BLAGN, 16% NELG, 14% ALG, and 20% stars. We detect QSOs out to z~5.5 and galaxies out to z~3. We have compiled extensive photometry from X-ray to radio bands. Together with our spectroscopic information, this enables us to derive detailed SEDs for our extragalactic sources. We fit a variety of templates to determine bolometric luminosities, and to constrain AGN and starburst components where both are present. While ~58% of X-ray Seyferts require a starburst event to fit observed photometry only 26% of the X-ray QSO population appear to have some kind of star formation contribution. This is significantly lower than for the Seyferts, especially if we take into account torus contamination at z>1 where the majority of our X-ray QSOs lie. In addition, we observe a rapid drop of the percentage of starburst contribution as X-ray luminosity increases. This is consistent with the quenching of star formation by powerful QSOs, as predicted by the merger model, or with a time lag between the peak of star formation and QSO activity. We have tested the hypothesis that there should be a strong connection between X-ray obscuration and star-formation but we do not find any association between X-ray column density and star formation rate both in the general population or the star-forming X-ray Seyferts. Our large compilation also allows us to report here the identification of 81 XBONG, 78 z>3 X-ray sources and 8 Type-2 QSO candidates. Also we have identified the highest redshift (z=5.4135) X-ray selected QSO with optical spectroscopy.Comment: 17 pages, 16 figures, accepted for publication in ApJS. Full data table and README file can be found online at http://hea-www.harvard.edu/~pgreen/Papers.htm

    A risk assessment framework for the socio-economic impacts of electricity transmission infrastructure failure due to space weather: an application to the United Kingdom

    Get PDF
    Space weather phenomena have been studied in detail in the peer‐reviewed scientific literature. However, there has arguably been scant analysis of the potential socioeconomic impacts of space weather, despite a growing gray literature from different national studies, of varying degrees of methodological rigor. In this analysis, we therefore provide a general framework for assessing the potential socioeconomic impacts of critical infrastructure failure resulting from geomagnetic disturbances, applying it to the British high‐voltage electricity transmission network. Socioeconomic analysis of this threat has hitherto failed to address the general geophysical risk, asset vulnerability, and the network structure of critical infrastructure systems. We overcome this by using a three‐part method that includes (i) estimating the probability of intense magnetospheric substorms, (ii) exploring the vulnerability of electricity transmission assets to geomagnetically induced currents, and (iii) testing the socioeconomic impacts under different levels of space weather forecasting. This has required a multidisciplinary approach, providing a step toward the standardization of space weather risk assessment. We find that for a Carrington‐sized 1‐in‐100‐year event with no space weather forecasting capability, the gross domestic product loss to the United Kingdom could be as high as £15.9 billion, with this figure dropping to £2.9 billion based on current forecasting capability. However, with existing satellites nearing the end of their life, current forecasting capability will decrease in coming years. Therefore, if no further investment takes place, critical infrastructure will become more vulnerable to space weather. Additional investment could provide enhanced forecasting, reducing the economic loss for a Carrington‐sized 1‐in‐100‐year event to £0.9 billion

    A Refined QSO Selection Method Using Diagnostics Tests: 663 QSO Candidates in the LMC

    Full text link
    We present 663 QSO candidates in the Large Magellanic Cloud (LMC) selected using multiple diagnostics. We started with a set of 2,566 QSO candidates from our previous work selected using time variability of the MACHO LMC lightcurves. We then obtained additional information for the candidates by crossmatching them with the Spitzer SAGE, the MACHO UBVI, the 2MASS, the Chandra and the XMM catalogs. Using this information, we specified six diagnostic features based on mid-IR colors, photometric redshifts using SED template fitting, and X-ray luminosities in order to further discriminate high confidence QSO candidates in the absence of spectra information. We then trained a one-class SVM (Support Vector Machine) model using the diagnostics features of the confirmed 58 MACHO QSOs. We applied the trained model to the original candidates and finally selected 663 high confidence QSO candidates. Furthermore, we crossmatched these 663 QSO candidates with the newly confirmed 144 QSOs and 275 non-QSOs in the LMC fields. On the basis of the counterpart analysis, we found that the false positive rate is less than 1%.Comment: 13 pages, 17 figures. accepted for publication in Ap

    Photometric redshifts in the SWIRE Survey

    Get PDF
    We present the SWIRE Photometric Redshift Catalogue, 1025119 redshifts of unprecedented reliability and accuracy. Our method is based on fixed galaxy and QSO templates applied to data at 0.36-4.5 mu, and on a set of 4 infrared emission templates fitted to infrared excess data at 3.6-170 mu. The code involves two passes through the data, to try to optimize recognition of AGN dust tori. A few carefully justified priors are used and are the key to supression of outliers. Extinction, A_V, is allowed as a free parameter. We use a set of 5982 spectroscopic redshifts, taken from the literature and from our own spectroscopic surveys, to analyze the performance of our method as a function of the number of photometric bands used in the solution and the reduced chi^2. For 7 photometric bands the rms value of (z_{phot}-z_{spec})/(1+z_{spec}) is 3.5%, and the percentage of catastrophic outliers is ~1%. We discuss the redshift distributions at 3.6 and 24 mu. In individual fields, structure in the redshift distribution corresponds to clusters which can be seen in the spectroscopic redshift distribution. 10% of sources in the SWIRE photometric redshift catalogue have z >2, and 4% have z>3, so this catalogue is a huge resource for high redshift galaxies. A key parameter for understanding the evolutionary status of infrared galaxies is L_{ir}/L_{opt}, which can be interpreted as the specific star-formation rate for starbursts. For dust tori around Type 1 AGN, L_{tor}/L_{opt} is a measure of the torus covering factor and we deduce a mean covering factor of 40%.Comment: 22 pages, 23 figures. Accepted for publication in MNRAS. Revised 28/2/08. Version with figures at full resolution at http://astro.ic.ac.uk/~mrr/swirephotzcat/swirephotz5.pdf.g

    A Multiwavelength Study of Binary Quasars and Their Environments

    Get PDF
    We present Chandra X-ray imaging and spectroscopy for 14 quasars in spatially resolved pairs, part of a complete sample of binary quasars with small transverse separations drawn from Sloan Digital Sky Survey (DR6) photometry. We find no significant difference in X-ray properties when compared with large control samples of isolated quasars. We present infrared photometry from our observations with SWIRC at the MMT, and from the WISE Preliminary Data Release, and fit simple spectral energy distributions to all 14 QSOs. We find preliminary evidence that substantial contributions from star formation are required, but possibly no more so than for isolated X-ray-detected QSOs. Sensitive searches of the X-ray images for extended emission, and the optical images for optical galaxy excess show that these binary QSOs are not preferentially found in rich cluster environments. While larger binary QSO samples with richer far-IR and sub-millimeter multiwavelength data might better reveal signatures of merging and triggering, optical color-selection of QSO pairs may be biased against such signatures. X-ray and/or variability selection of QSO pairs, while challenging, should be attempted. We present in our Appendix a primer on X-ray flux and luminosity calculations.Comment: 21 pages, accepted to ApJ 08/31/201

    A tale of two feedbacks: star formation in the host galaxies of radio AGNs

    Get PDF
    Several lines of argument support the existence of a link between activity at the nuclei of galaxies, in the form of an accreting supermassive black hole, and star formation activity in these galaxies. Radio jets have long been argued to be an ideal mechanism that allows active galactic nuclei (AGNs) to interact with their host galaxies and affect star formation. We use a sample of radio sources in the North Ecliptic Pole (NEP) field to study the nature of this putative link, by means of spectral energy distribution (SED) fitting. We employ the excellent spectral coverage of the AKARI infrared space telescope and the rich ancillary data available in the NEP to build SEDs extending from UV to far-IR wavelengths. We find a significant AGN component in our sample of relatively faint radio sources (<mJy). A positive correlation is found between the luminosity of the AGN component and that of star formation in the host galaxy, independent of the radio luminosity. In contrast, for narrow redshift and AGN luminosity ranges, we find that increasing radio luminosity leads to a decrease in the specific star formation rate. The most radio-loud AGNs are found to lie on the main sequence of star formation for their respective redshifts. For the first time, we potentially see such a two-sided feedback process in the same sample. We discuss the possible suppression of star formation, but not total quenching, in systems with strong radio jets, that supports the maintenance nature of feedback from radio AGN jets

    QSO Selection Algorithm Using Time Variability and Machine Learning: Selection of 1,620 QSO Candidates from MACHO LMC Database

    Full text link
    We present a new QSO selection algorithm using a Support Vector Machine (SVM), a supervised classification method, on a set of extracted times series features including period, amplitude, color, and autocorrelation value. We train a model that separates QSOs from variable stars, non-variable stars and microlensing events using 58 known QSOs, 1,629 variable stars and 4,288 non-variables using the MAssive Compact Halo Object (MACHO) database as a training set. To estimate the efficiency and the accuracy of the model, we perform a cross-validation test using the training set. The test shows that the model correctly identifies ~80% of known QSOs with a 25% false positive rate. The majority of the false positives are Be stars. We applied the trained model to the MACHO Large Magellanic Cloud (LMC) dataset, which consists of 40 million lightcurves, and found 1,620 QSO candidates. During the selection none of the 33,242 known MACHO variables were misclassified as QSO candidates. In order to estimate the true false positive rate, we crossmatched the candidates with astronomical catalogs including the Spitzer Surveying the Agents of a Galaxy's Evolution (SAGE) LMC catalog and a few X-ray catalogs. The results further suggest that the majority of the candidates, more than 70%, are QSOs.Comment: 17 pages, 11 figures; accepted for the publication in Ap
    corecore