174 research outputs found

    Online change detection for energy-efficient mobilec crowdsensing

    Get PDF
    Mobile crowdsensing is power hungry since it requires continuously and simultaneously sensing, processing and uploading fused data from various sensor types including motion sensors and environment sensors. Realizing that being able to pinpoint change points of contexts enables energy-efficient mobile crowdsensing, we modify histogram-based techniques to efficiently detect changes, which has less computational complexity and performs better than the conventional techniques. To evaluate our proposed technique, we conducted experiments on real audio databases comprising 200 sound tracks. We also compare our change detection with multivariate normal distribution and one-class support vector machine. The results show that our proposed technique is more practical for mobile crowdsensing. For example, we show that it is possible to save 80% resource compared to standard continuous sensing while remaining detection sensitivity above 95%. This work enables energy-efficient mobile crowdsensing applications by adapting to contexts

    Automatic Defect Detection for TFT-LCD Array Process Using Quasiconformal Kernel Support Vector Data Description

    Get PDF
    Defect detection has been considered an efficient way to increase the yield rate of panels in thin film transistor liquid crystal display (TFT-LCD) manufacturing. In this study we focus on the array process since it is the first and key process in TFT-LCD manufacturing. Various defects occur in the array process, and some of them could cause great damage to the LCD panels. Thus, how to design a method that can robustly detect defects from the images captured from the surface of LCD panels has become crucial. Previously, support vector data description (SVDD) has been successfully applied to LCD defect detection. However, its generalization performance is limited. In this paper, we propose a novel one-class machine learning method, called quasiconformal kernel SVDD (QK-SVDD) to address this issue. The QK-SVDD can significantly improve generalization performance of the traditional SVDD by introducing the quasiconformal transformation into a predefined kernel. Experimental results, carried out on real LCD images provided by an LCD manufacturer in Taiwan, indicate that the proposed QK-SVDD not only obtains a high defect detection rate of 96%, but also greatly improves generalization performance of SVDD. The improvement has shown to be over 30%. In addition, results also show that the QK-SVDD defect detector is able to accomplish the task of defect detection on an LCD image within 60 ms

    A Refined QSO Selection Method Using Diagnostics Tests: 663 QSO Candidates in the LMC

    Full text link
    We present 663 QSO candidates in the Large Magellanic Cloud (LMC) selected using multiple diagnostics. We started with a set of 2,566 QSO candidates from our previous work selected using time variability of the MACHO LMC lightcurves. We then obtained additional information for the candidates by crossmatching them with the Spitzer SAGE, the MACHO UBVI, the 2MASS, the Chandra and the XMM catalogs. Using this information, we specified six diagnostic features based on mid-IR colors, photometric redshifts using SED template fitting, and X-ray luminosities in order to further discriminate high confidence QSO candidates in the absence of spectra information. We then trained a one-class SVM (Support Vector Machine) model using the diagnostics features of the confirmed 58 MACHO QSOs. We applied the trained model to the original candidates and finally selected 663 high confidence QSO candidates. Furthermore, we crossmatched these 663 QSO candidates with the newly confirmed 144 QSOs and 275 non-QSOs in the LMC fields. On the basis of the counterpart analysis, we found that the false positive rate is less than 1%.Comment: 13 pages, 17 figures. accepted for publication in Ap

    Authorship Analysis Approaches

    Get PDF
    This chapter presents an overview of authorship analysis from multiple standpoints. It includes historical perspective, description of stylometric features, and authorship analysis techniques and their limitations

    Exploiting likely-positive and unlabeled data to improve the identification of protein-protein interaction articles

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Experimentally verified protein-protein interactions (PPI) cannot be easily retrieved by researchers unless they are stored in PPI databases. The curation of such databases can be made faster by ranking newly-published articles' relevance to PPI, a task which we approach here by designing a machine-learning-based PPI classifier. All classifiers require labeled data, and the more labeled data available, the more reliable they become. Although many PPI databases with large numbers of labeled articles are available, incorporating these databases into the base training data may actually reduce classification performance since the supplementary databases may not annotate exactly the same PPI types as the base training data. Our first goal in this paper is to find a method of selecting likely positive data from such supplementary databases. Only extracting likely positive data, however, will bias the classification model unless sufficient negative data is also added. Unfortunately, negative data is very hard to obtain because there are no resources that compile such information. Therefore, our second aim is to select such negative data from unlabeled PubMed data. Thirdly, we explore how to exploit these likely positive and negative data. And lastly, we look at the somewhat unrelated question of which term-weighting scheme is most effective for identifying PPI-related articles.</p> <p>Results</p> <p>To evaluate the performance of our PPI text classifier, we conducted experiments based on the BioCreAtIvE-II IAS dataset. Our results show that adding likely-labeled data generally increases AUC by 3~6%, indicating better ranking ability. Our experiments also show that our newly-proposed term-weighting scheme has the highest AUC among all common weighting schemes. Our final model achieves an F-measure and AUC 2.9% and 5.0% higher than those of the top-ranking system in the IAS challenge.</p> <p>Conclusion</p> <p>Our experiments demonstrate the effectiveness of integrating unlabeled and likely labeled data to augment a PPI text classification system. Our mixed model is suitable for ranking purposes whereas our hierarchical model is better for filtering. In addition, our results indicate that supervised weighting schemes outperform unsupervised ones. Our newly-proposed weighting scheme, TFBRF, which considers documents that do not contain the target word, avoids some of the biases found in traditional weighting schemes. Our experiment results show TFBRF to be the most effective among several other top weighting schemes.</p

    Classification and biomarker identification using gene network modules and support vector machines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Classification using microarray datasets is usually based on a small number of samples for which tens of thousands of gene expression measurements have been obtained. The selection of the genes most significant to the classification problem is a challenging issue in high dimension data analysis and interpretation. A previous study with SVM-RCE (Recursive Cluster Elimination), suggested that classification based on groups of correlated genes sometimes exhibits better performance than classification using single genes. Large databases of gene interaction networks provide an important resource for the analysis of genetic phenomena and for classification studies using interacting genes.</p> <p>We now demonstrate that an algorithm which integrates network information with recursive feature elimination based on SVM exhibits good performance and improves the biological interpretability of the results. We refer to the method as SVM with Recursive Network Elimination (SVM-RNE)</p> <p>Results</p> <p>Initially, one thousand genes selected by t-test from a training set are filtered so that only genes that map to a gene network database remain. The Gene Expression Network Analysis Tool (GXNA) is applied to the remaining genes to form <it>n </it>clusters of genes that are highly connected in the network. Linear SVM is used to classify the samples using these clusters, and a weight is assigned to each cluster based on its importance to the classification. The least informative clusters are removed while retaining the remainder for the next classification step. This process is repeated until an optimal classification is obtained.</p> <p>Conclusion</p> <p>More than 90% accuracy can be obtained in classification of selected microarray datasets by integrating the interaction network information with the gene expression information from the microarrays.</p> <p>The Matlab version of SVM-RNE can be downloaded from <url>http://web.macam.ac.il/~myousef</url></p
    • …
    corecore