505 research outputs found

    Efficient detection, analysis and classification of lightning radiation fields

    Get PDF
    Modeling the large scale lightning flash structure is considered. Large scale flash data has been measured from strip charts of storms of August 5, August 26, and September 12, 1975. The data is being processed by a computer program called SASEV to estimate the large scale flash statistics. The program, experimental results, and conclusions for the large scale flash structure are described. The progress made in examining the internal flash structure consists mainly of developing the software required to process the NASA digital tape data. A FORTRAN program has been written for the statistical analysis of series of events. The statistics computed and tests performed are found to be particularly useful in the analysis of lightning data

    Optimal estimation for discrete time jump processes

    Get PDF
    Optimum estimates of nonobservable random variables or random processes which influence the rate functions of a discrete time jump process (DTJP) are obtained. The approach is based on the a posteriori probability of a nonobservable event expressed in terms of the a priori probability of that event and of the sample function probability of the DTJP. A general representation for optimum estimates and recursive equations for minimum mean squared error (MMSE) estimates are obtained. MMSE estimates are nonlinear functions of the observations. The problem of estimating the rate of a DTJP when the rate is a random variable with a probability density function of the form cx super K (l-x) super m and show that the MMSE estimates are linear in this case. This class of density functions explains why there are insignificant differences between optimum unconstrained and linear MMSE estimates in a variety of problems

    Rate statistics for radio noise from lightning

    Get PDF
    Radio frequency noise from lightning was measured at several frequencies in the HF - VHF range at the Kennedy Space Center, Florida. The data were examined to determine flashing rate statistics during periods of strong activity from nearby storms. It was found that the time between flashes is modeled reasonably well by a random variable with a lognormal distribution

    Formation of reactive oxygen species by human and bacterial pyruvate and 2- oxoglutarate dehydrogenase multienzyme complexes reconstituted from recombinant components

    Get PDF
    Individual recombinant components of pyruvate and 2-oxoglutarate dehydrogenase multienzyme complexes (PDHc, OGDHc) of human and Escherichia coli (E. coli) origin were expressed and purified from E. coli with optimized protocols. The four multienzyme complexes were each reconstituted under optimal conditions at different stoichiometric ratios. Binding stoichiometries for the highest catalytic efficiency were determined from the rate of NADH generation by the complexes at physiological pH. Since some of these complexes were shown to possess ‘moonlighting’ activities under pathological conditions often accompanied by acidosis, activities were also determined at pH 6.3. As reactive oxygen species (ROS) generation by the E3 component of hOGDHc is a pathologically relevant feature, superoxide generation by the complexes with optimal stoichiometry was measured by the acetylated cytochrome c reduction method in both the forward and the reverse catalytic directions. Various known affectors of physiological activity and ROS production, including Ca(2+), ADP, lipoylation status or pH, were investigated. The human complexes were also reconstituted with the most prevalent human pathological mutant of the E3 component, G194C and characterized; isolated human E3 with the G194C substitution was previously reported to have an enhanced ROS generating capacity. It is demonstrated that: i. PDHc, similarly to OGDHc, is able to generate ROS and this feature is displayed by both the E. coli and human complexes, ii. Reconstituted hPDHc generates ROS at a significantly higher rate as compared to hOGDHc in both the forward and the reverse reactions when ROS generation is calculated for unit mass of their common E3 component, iii. The E1 component or E1-E2 subcomplex generates significant amount of ROS only in hOGDHc; iv. Incorporation of the G194C variant of hE3, the result of a disease-causing mutation, into reconstituted hOGDHc and hPDHc indeed leads to a decreased activity of both complexes and higher ROS generation by only hOGDHc and only in its reverse reaction

    Human 2-Oxoglutarate Dehydrogenase Complex E1 Component Forms a Thiamin-derived Radical by Aerobic Oxidation of the Enamine Intermediate.

    Get PDF
    Herein are reported unique properties of the human 2-oxoglutarate dehydrogenase multienzyme complex (OGDHc), a rate-limiting enzyme in the Krebs (citric acid) cycle. (a) Functionally competent 2-oxoglutarate dehydrogenase (E1o-h) and dihydrolipoyl succinyltransferase components have been expressed according to kinetic and spectroscopic evidence. (b) A stable free radical, consistent with the C2-(C2alpha-hydroxy)-gamma-carboxypropylidene thiamin diphosphate (ThDP) cation radical was detected by electron spin resonance upon reaction of the E1o-h with 2-oxoglutarate (OG) by itself or when assembled from individual components into OGDHc. (c) An unusual stability of the E1o-h-bound C2-(2alpha-hydroxy)-gamma-carboxypropylidene thiamin diphosphate (the "ThDP-enamine"/C2alpha-carbanion, the first postdecarboxylation intermediate) was observed, probably stabilized by the 5-carboxyl group of OG, not reported before. (d) The reaction of OG with the E1o-h gave rise to superoxide anion and hydrogen peroxide (reactive oxygen species (ROS)). (e) The relatively stable enzyme-bound enamine is the likely substrate for oxidation by O2, leading to the superoxide anion radical (in d) and the radical (in b). (f) The specific activity assessed for ROS formation compared with the NADH (overall complex) activity, as well as the fraction of radical intermediate occupying active centers of E1o-h are consistent with each other and indicate that radical/ROS formation is an "off-pathway" side reaction comprising less than 1% of the "on-pathway" reactivity. However, the nearly ubiquitous presence of OGDHc in human tissues, including the brain, makes these findings of considerable importance in human metabolism and perhaps disease

    Spectral analysis and domain truncation for Maxwell's equations

    Get PDF
    We analyse how the spectrum of the anisotropic Maxwell system with bounded conductivity σ on a Lipschitz domain Ω is approximated by domain truncation. First we prove a new non-convex enclosure for the spectrum of the Maxwell system, with weak assumptions on the geometry of Ω and none on the behaviour of the coefficients at infinity. We also establish a simple criterion for non-accumulation of eigenvalues at as well as resolvent estimates. For asymptotically constant coefficients, we describe the essential spectrum and show that spectral pollution may occur only in the essential numerical range of the quadratic pencil , acting on divergence-free vector fields. Further, every isolated spectral point of the Maxwell system lying outside and outside the part of the essential spectrum on is approximated by spectral points of the Maxwell system on the truncated domains. Our analysis is based on two new abstract results on the (limiting) essential spectrum of polynomial pencils and triangular block operator matrices, which are of general interest. We believe our strategy of proof could be used to establish domain truncation spectral exactness for more general classes of non-self-adjoint differential operators and systems with non-constant coefficients

    Assessing the Criteria for Definition of Perimembranous Ventricular Septal Defects in Light of the Search for Consensus

    Get PDF
    Background: Discussions continue as to whether ventricular septal defects are best categorized according to their right ventricular geography or their borders. This is especially true when considering the perimembranous defect. Our aim, therefore, was to establish the phenotypic feature of the perimembranous defect, and to establish the ease of distinguishing its geographical variants. Methods and results: We assessed unrepaired isolated perimembranous ventricular defects from six historic archives, subcategorizing them using the ICD-11 coding system. We identified 365 defects, of which 94 (26%) were deemed to open centrally, 168 (46%) to open to the outlet, and 84 (23%) to the inlet of the right ventricle, with 19 (5%) being confluent. In all hearts, the unifying phenotypic feature was fibrous continuity between the leaflets of the mitral and tricuspid valves. This was often directly between the valves, but in all instances incorporated continuity through the atrioventricular portion of the membranous septum. In contrast, we observed fibrous continuity between the leaflets of the tricuspid and aortic valves in only 298 (82%) of the specimens. When found, discontinuity most commonly was seen in the outlet and central defects. There were no discrepancies between evaluators in distinguishing the borders, but there was occasional disagreement in determining the right ventricular geography of the defect. Conclusions: The unifying feature of perimembranous defects, rather than being aortic-to-tricuspid valvar fibrous continuity, is fibrous continuity between the leaflets of the atrioventricular valves. While right ventricular geography is important in classification, it is the borders which are more objectively defined

    A False Start in the Race Against Doping in Sport: Concerns With Cycling’s Biological Passport

    Get PDF
    Professional cycling has suffered from a number of doping scandals. The sport’s governing bodies have responded by implementing an aggressive new antidoping program known as the biological passport. Cycling’s biological passport marks a departure from traditional antidoping efforts, which have focused on directly detecting prohibited substances in a cyclist’s system. Instead, the biological passport tracks biological variables in a cyclist’s blood and urine over time, monitoring for fluctuations that are thought to indirectly reveal the effects of doping. Although this method of indirect detection is promising, it also raises serious legal and scientific concerns. Since its introduction, the cycling community has debated the reliability of indirect biological-passport evidence and the clarity, consistency, and transparency of its use in proving doping violations. Such uncertainty undermines the legitimacy of finding cyclists guilty of doping based on this indirect evidence alone. Antidoping authorities should address these important concerns before continuing to pursue doping sanctions against cyclists solely on the basis of their biological passports

    Human 2-Oxoglutarate Dehydrogenase Complex E1 Component Forms a Thiamin-derived Radical by Aerobic Oxidation of the Enamine Intermediate.

    Get PDF
    Herein are reported unique properties of the human 2-oxoglutarate dehydrogenase multienzyme complex (OGDHc), a rate-limiting enzyme in the Krebs (citric acid) cycle. (a) Functionally competent 2-oxoglutarate dehydrogenase (E1o-h) and dihydrolipoyl succinyltransferase components have been expressed according to kinetic and spectroscopic evidence. (b) A stable free radical, consistent with the C2-(C2alpha-hydroxy)-gamma-carboxypropylidene thiamin diphosphate (ThDP) cation radical was detected by electron spin resonance upon reaction of the E1o-h with 2-oxoglutarate (OG) by itself or when assembled from individual components into OGDHc. (c) An unusual stability of the E1o-h-bound C2-(2alpha-hydroxy)-gamma-carboxypropylidene thiamin diphosphate (the "ThDP-enamine"/C2alpha-carbanion, the first postdecarboxylation intermediate) was observed, probably stabilized by the 5-carboxyl group of OG, not reported before. (d) The reaction of OG with the E1o-h gave rise to superoxide anion and hydrogen peroxide (reactive oxygen species (ROS)). (e) The relatively stable enzyme-bound enamine is the likely substrate for oxidation by O2, leading to the superoxide anion radical (in d) and the radical (in b). (f) The specific activity assessed for ROS formation compared with the NADH (overall complex) activity, as well as the fraction of radical intermediate occupying active centers of E1o-h are consistent with each other and indicate that radical/ROS formation is an "off-pathway" side reaction comprising less than 1% of the "on-pathway" reactivity. However, the nearly ubiquitous presence of OGDHc in human tissues, including the brain, makes these findings of considerable importance in human metabolism and perhaps disease
    corecore