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A B S T R A C T

We analyse how the spectrum of the anisotropic Maxwell system with bounded conductivity
𝜎 on a Lipschitz domain Ω is approximated by domain truncation. First we prove a new non-
convex enclosure for the spectrum of the Maxwell system, with weak assumptions on the
geometry of Ω and none on the behaviour of the coefficients at infinity. We also establish a
simple criterion for non-accumulation of eigenvalues at iℝ as well as resolvent estimates. For
asymptotically constant coefficients, we describe the essential spectrum and show that spectral
pollution may occur only in the essential numerical range 𝑊𝑒(𝐿∞)⊂ℝ of the quadratic pencil
𝐿∞(𝜔) = 𝜇−1∞ curl2 −𝜔2𝜀∞, acting on divergence-free vector fields. Further, every isolated
spectral point of the Maxwell system lying outside 𝑊𝑒(𝐿∞) and outside the part of the essential
spectrum on iℝ is approximated by spectral points of the Maxwell system on the truncated
domains. Our analysis is based on two new abstract results on the (limiting) essential spectrum
of polynomial pencils and triangular block operator matrices, which are of general interest. We
believe our strategy of proof could be used to establish domain truncation spectral exactness for
more general classes of non-self-adjoint differential operators and systems with non-constant
coefficients.

R É S U M É
Nous analysons l’approximation du spectre du système de Maxwell anisotrope à conductivité

bornée 𝜎 sur un domaine lipschitzien Ω, par troncature de domaine. Nous démontrons d’abord
une nouvelle envelope non convexe pour le spectre du système de Maxwell, avec des hypothèses
faibles sur la géométrie de Ω et sans hypothèses sur le comportement des coefficients à l’infini.
Nous établissons également un critère simple de non-accumulation des valeurs propres vers l’axe
iℝ ainsi que des estimés du résolvant. Pour des coefficients asymptotiquement constants, nous
décrivons le spectre essentiel et montrons que la pollution spectrale ne peut se produire que dans
l’image numérique essentielle𝑊𝑒(𝐿∞)⊂ℝ du faisceau quadratique𝐿∞(𝜔)=𝜇−1∞ curl2 −𝜔2𝜀∞,
agissant sur des champs vectoriels sans divergence. De plus, chaque point spectral isolé du
système de Maxwell situé à l’extérieur de 𝑊𝑒(𝐿∞) et à l’extérieur de la partie du spectre
essentiel sur iℝ est approximé par des points spectraux du système de Maxwell sur les domaines
tronqués. Notre analyse est basée sur deux nouveaux résultats abstraits sur le spectre essentiel
(limitant) des faisceaux polynomiaux et des matrices triangulaires par blocs d’opérateurs, qui
sont d’intérêt général. Nous croyons que notre stratégie de démonstration pourrait être utilisée
pour établir l’exactitude spectrale de la troncature de domaine pour des classes plus générales
d’opérateurs différentiels non auto-adjoints et de systèmes à coefficients non constants.

1. Introduction
Given a possibly unbounded domain Ω ⊂ ℝ3 with Lipschitz boundary, and an increasing sequence of bounded

Lipschitz domains Ω𝑛⊂Ω exhausting Ω, we are interested in the spectral properties of the anisotropic Maxwell system

−i𝜎𝐸 + i curl𝐻 = 𝜔𝜀𝐸
−i curl𝐸 = 𝜔𝜇𝐻 in Ω, 𝜈 × 𝐸 = 0 on 𝜕Ω, (1.1)

and in its spectral approximation via the sequence of problems

−i𝜎𝐸𝑛+ i curl𝐻𝑛 = 𝜔𝜀𝐸𝑛
−i curl𝐸𝑛 = 𝜔𝜇𝐻𝑛

in Ω𝑛, 𝜈 ×𝐸𝑛= 0 on 𝜕Ω𝑛, 𝑛 ∈ ℕ. (1.2)
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Here𝜔 is the spectral parameter, 𝜀 the electric permittivity, 𝜇 the magnetic permeability and 𝜎 the conductivity; 𝜈 is the
outward unit normal vector to the boundary. We allow the coefficients 𝜀, 𝜇, 𝜎 to be non-constant and symmetric real-
tensor-valued, bounded on Ω with non-negative matrix values; for some results, e.g. involving the essential spectrum,
we assume 𝜀=𝜀∞ id, 𝜇=𝜇∞ id and 𝜎=0 at infinity.

We denote by 𝑉 (⋅) and 𝑉𝑛(⋅) the operator pencils associated with problem (1.1) and (1.2) in𝐿2(Ω,ℂ3)⊕𝐿2(Ω,ℂ3)
and 𝐿2(Ω𝑛,ℂ3)⊕𝐿2(Ω𝑛,ℂ3), respectively, given by the same matrix differential expression

𝑉 (𝜔) =
(

−i𝜎 i curl
−i curl0 0

)

− 𝜔
(

𝜀 0
0 𝜇

)

, 𝜔 ∈ ℂ, (1.3)

on their respective domains which are independent of 𝜔, see (2.4) below. Here curl0 indicates that curl is considered
with the boundary condition in (1.1).

An important feature of our Maxwell systems is that the conductivity 𝜎 is assumed to be non-trivial, making
the problem dissipative rather than self-adjoint, see e.g. [1, 2, 3, 4]. Furthermore, we avoid any hypotheses on the
permeability, permittivity and conductivity, or upon the geometry, which would allow the use of TE- and TM-
mode reductions to second order operators of Schrödinger or conductivity type. This lack of simplifying hypotheses
introduces significant additional hurdles in the analysis compared to the self-adjoint case, some of which were already
apparent in the paper [4] on the essential spectrum (see also [5] for bounded domains). The non-convexity of the
essential spectrum, consisting of a part which is purely real and a part which is purely imaginary, might be expected
to lead to much more spectral pollution.

In the self-adjoint case, this phenomenon is well known when variational approximation methods are used, see
e.g. [6]: following discretisation, the spectral gaps may fill up with eigenvalues of the discretised problem which are
so closely spaced that it may be impossible to distinguish the spectral bands from the spectral gaps. For finite element
approximations to Maxwell systems on bounded domains, this may be avoided by the use of appropriate conforming
elements, see [7]. The study of which finite element bases pollute for a given class of problems has been taken up by
many authors: see, e.g. [8] for self-adjoint Maxwell systems on bounded, convex domains; [9] for an application to
Maxwell resonances; and [10] for self-adjoint Dirac and Schrödinger equations. Unfortunately, in our non-self-adjoint
context, elegant techniques such as quadratic relative spectrum [11] or residual-minimisation algorithms [12, 13] are not
available. For Maxwell systems on infinite domains with coefficients which are constant outside a compact set, one may
also use domain decomposition and boundary integral techniques. These approaches are extensively researched, see
e.g. [14, 15, 16]; they result in bounded-domain problems with non-local boundary conditions depending analytically
upon the spectral parameter, presenting a whole new set of challenges, particularly in the non-selfadjoint case.

For particular differential operators on infinite domains or with singularities, spectral pollution caused by domain
truncation is also well studied. To avoid it one may, for instance, devise non-reflecting boundary conditions [17, 18],
or resort to the complex scaling method [19], which reappeared as the perfectly matched layer (PML) method in the
computational literature [20]. In fact this technique replaces a self-adjoint problem by a non-self-adjoint one.

In our opinion the clearest way to think about these methods, and about dissipative barrier methods more generally,
is that they replace the underlying operator by one whose essential numerical range [21] does not contain the
eigenvalues of interest. The results in [21] then give a unified explanation of why such methods work, within a wide
operator-theoretic framework which also allows a uniform treatment of many of the finite element approximation
schemes.

The Maxwell system, however, presents some additional challenges: for a start, (1.3) defines a pencil of operators,
for which fewer results on spectral pollution are available. We generalise the concept of limiting essential spectrum,
presented in [22], to sequences of pencils of closed operators 𝑇𝑛 ∶ ℂ→𝐶() with domains dom(𝑇𝑛(𝜆)) independent
of 𝜆 for each 𝑛 ∈ ℕ, by means of the formula

𝜎𝑒
(

(𝑇𝑛)𝑛∈ℕ
)

∶=
{

𝜆∈ℂ ∶ ∃ 𝐼 ⊂ℕ, 𝐼 infinite, ∃ 𝑥𝑛∈dom(𝑇𝑛), ‖𝑥𝑛‖=1, 𝑛∈𝐼,with 𝑥𝑛 ⇀ 0, ‖𝑇𝑛(𝜆)𝑥𝑛‖ → 0
}

.

This generalisation is important because the best results on spectral pollution come not from considering the linear
Maxwell pencil (1.3), but rather by eliminating the magnetic field𝐻 to obtain a quadratic pencil (⋅) whose numerical
range is not convex. Another key ingredient is the operator matrix structure of the pencil (⋅) induced by the Helmholtz
decomposition.

Our main result, see Theorem 2.4, establishes a surprisingly small enclosure for the set of spectral pollution of the
domain truncation method for (1.1), which is much smaller than the one given by the essential numerical range𝑊𝑒(𝑉 ),
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a convex set enclosing the essential spectrum, see [21, 23]. In fact, Theorem 2.4 goes beyond what can be achieved
using essential numerical ranges, whether for pencils or operators: it relies on new results which we develop in Sections
6 and 8 on limiting essential spectra of sequences of polynomial operator pencils and operator matrices. To the best of
our knowledge, the domain truncation results we present here for the Maxwell system in unbounded domains are new
even in the self-adjoint setting.

Much of the proof of Theorem 2.4 relies on new, non-convex enclosures for the spectra of Maxwell problems,
which we present in Theorem 2.1. These are valid for the original problem (1.1) on Ω, for all the truncated problems
(1.2) on Ω𝑛 and, if they exist, for corresponding ‘limiting problems at ∞’. In particular, they provide what are, to our
knowledge, the first enclosures for the essential spectrum if the coefficients do not have limits at ∞, and novel bounds
for the non-real eigenvalues. The non-convexity of our enclosures allows them to be much tighter than bounds obtained
from the numerical range, which is a horizontal strip below the real axis. In fact, apart from the imaginary axis, the
new spectral enclosures are contained in a strip whose width is half that of the numerical range. They also provide an
incredibly simple criterion for non-accumulation of the spectrum at iℝ, including non-accumulation at 0.

The paper is organised as follows. In Section 2 we present our main results, illustrate our new spectral enclosure
and give some examples showing e.g that the latter is sharp. Section 3 contains the proof of the spectral enclosure
theorem and some auxiliary results such as resolvent estimates. In Section 4 we study the relations between the spectra
and essential spectra of the Maxwell pencil 𝑉 (⋅) and the quadratic operator pencil (⋅). This enables us to explicitly
characterise the essential spectrum of the Maxwell pencil in terms of the asymptotic limits of the coefficients 𝜀, 𝜇 and
𝜎 in Section 5. In Section 6 we prove abstract results on spectral pollution, limiting approximate point spectrum and
limiting essential spectrum for polynomial operator pencils. In Section 7 we investigate the limiting essential spectrum
of the Maxwell pencil 𝑉 (⋅) via the associated quadratic operator pencil (⋅). As a consequence, we prove absence of
spectral pollution for domain truncation outside the union of two sets on the real and the imaginary axis, the essential
numerical range of the self-adjoint limiting quadratic operator pencil 𝐿∞(⋅) on the real axis and the convex hull of the
essential spectrum on the imaginary axis. Section 8 and the Appendix contain the abstract results on essential spectra
for upper triangular operator matrices and computational details for the example in Section 2, respectively.

2. Main results and examples
As explained in the introduction, we are interested in domain truncation methods for the anisotropic Maxwell

system (1.1). We assume that the coefficients 𝜀, 𝜇 and 𝜎 are non-negative symmetric matrix valued functions in
𝐿∞(Ω,ℝ3×3) such that, for some constants 𝜀min, 𝜀max, 𝜇min, 𝜇max, 𝜎min, 𝜎max,

0 < 𝜀min ≤ 𝜂 ⋅𝜀𝜂 ≤ 𝜀max,
0 < 𝜇min ≤ 𝜂 ⋅𝜇𝜂 ≤ 𝜇max,
0 ≤ 𝜎min ≤ 𝜂 ⋅𝜎𝜂 ≤ 𝜎max,

𝜂∈ℝ3, |𝜂|=1. (2.1)

The magnetic field 𝐻 and electric field 𝐸 lie respectively in the function spaces

𝐻(curl,Ω) ∶= {𝑢 ∈ 𝐿2(Ω)3 ∶ curl 𝑢 ∈ 𝐿2(Ω)3},

𝐻0(curl,Ω) ∶= {𝑢 ∈ 𝐻(curl,Ω) ∶ 𝜈 × 𝑢|𝜕Ω = 0},

with the canonical norm ‖𝑢‖𝐻(curl,Ω) ∶=(‖𝑢‖2+‖curl 𝑢‖2)1∕2. Unless stated otherwise, our function spaces consist of
complex-valued functions and so we write, for example, 𝐿2(Ω) = 𝐿2(Ω,ℂ) for short.

We associate two operators with the symmetric differential expression curl in 𝐿2(Ω)3, first, the operator curl on its
maximal domain dom curl=𝐻(curl,Ω) and, secondly, the adjoint curl0=curl∗ of the operator curl, given by curl on
the domain dom curl0=𝐻0(curl,Ω).

We now recall the definitions of other function spaces used in the sequel. The homogeneous Sobolev spaces 𝐻̇1
0 (Ω)

and 𝐻̇1(Ω) are defined as the completions of the Schwartz spaces (Ω) and (Ω), respectively, with respect to the
seminorm ‖𝑢‖𝐻̇1(Ω) ∶= ‖∇𝑢‖𝐿2(Ω). These spaces are in general strictly bigger than the usual Sobolev spaces 𝐻1

0 (Ω)
and 𝐻1(Ω) if Ω does not have finite measure or if |Ω|<∞ but fails to have quasi-resolved boundary in the sense of
[24, Sect. 4.3, p. 148-150] (note that Lipschitz domains have quasi-resolved boundary).
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The spaces ∇𝐻̇1
0 (Ω) and ∇𝐻̇1(Ω) are the images of 𝐻̇1

0 (Ω) and 𝐻̇1(Ω), respectively, under the gradient. Further,
we define

𝐻(div,Ω) ∶= {𝑢 ∈ 𝐿2(Ω)3 ∶ div 𝑢 ∈ 𝐿2(Ω)}, (2.2)
𝐻(div 0,Ω) ∶= {𝑢 ∈ 𝐿2(Ω)3 ∶ div 𝑢 = 0 in Ω}. (2.3)

Here we equip 𝐻(div,Ω) with the canonical norm ‖𝑢‖𝐻(div,Ω) ∶= (‖𝑢‖2 + ‖div 𝑢‖2)1∕2 and 𝐻(div 0,Ω) is considered
as a closed subspace of 𝐿2(Ω)3 with the 𝐿2-norm which coincides with ‖⋅‖𝐻(div,Ω) on 𝐻(div 0,Ω). Finally, the space
𝐻(curl,Ω) ∩𝐻(div,Ω) is equipped with the norm ‖𝑢‖𝐻(curl,Ω)∩𝐻(div,Ω) ∶=‖𝑢‖𝐻(curl,Ω) + ‖𝑢‖𝐻(div,Ω).

We are now able to state our first new result, which yields non-convex spectral enclosures for dissipative Maxwell
systems. This enclosure yields the first bounds for both the essential spectrum and the non-real eigenvalues.

Theorem 2.1. The Maxwell operator pencil in 𝐿2(Ω)3 ⊕𝐿2(Ω)3 given by

𝑉 (𝜔)∶=
(

−i𝜎 i curl
−i curl0 0

)

− 𝜔
(

𝜀 0
0 𝜇

)

, dom(𝑉 (𝜔))∶=𝐻0(curl,Ω)⊕𝐻(curl,Ω), (2.4)

for 𝜔 ∈ ℂ satisfies the spectral enclosure

𝜎(𝑉 ) ⊂ i
[

−
𝜎max
𝜀min

, 0
]

∪
{

𝜔∈ℂ⧵iℝ ∶ Im𝜔∈
[

−1
2
𝜎max
𝜀min

,−1
2
𝜎min
𝜀max

]

,

(Re𝜔)2−3(Im𝜔)2+2
𝜎max
𝜀min

| Im𝜔|≥
𝜆Ωmin

𝜀max𝜇max

}

where 𝜆Ωmin ∶=min 𝜎(curl curl0 |𝐻(div 0,Ω)) ≥ 0. In particular, if 𝜆Ωmin>0, then

𝜎(𝑉 ) ∩
(

(

−
( 𝜆Ωmin
𝜀max𝜇max

)1∕2
, 0
)

∪
(

0,
( 𝜆Ωmin
𝜀max𝜇max

)1∕2)
)

= ∅, (2.5)

and if 𝜆Ωmin>
1
3
𝜎2max𝜀max𝜇max

𝜀2min
, then 𝜎(𝑉 ) ∩ iℝ⊂ i

[

− 𝜎max
𝜀min

, 0
]

is isolated from 𝜎(𝑉 ) ⧵ iℝ.

Remark 2.2. The enclosure in Theorem 2.1 becomes larger when the domain Ω does, provided we choose the optimal
values 𝜀Ωmin, 𝜇Ωmin, 𝜎Ωmin and 𝜀Ωmax, 𝜇Ωmax, 𝜎Ωmax for Ω as the bounds in (2.1). In this case, 𝜀Ωmin, 𝜇Ωmin, 𝜎Ωmin and 𝜆Ωmin
are decreasing with Ω, while 𝜀Ωmax, 𝜇Ωmax, 𝜎Ωmax are increasing. The threshold 𝜆Ωmin may be strictly positive, e.g. for a
problem on a waveguide such as in Example 2.6 below, or on certain quasi-cylindrical domains (cf. [25, Sect. X.6]),
while 𝜆Ωmin = 0 in any domain for which a Poincaré inequality does not hold.

The possible different shapes of the above non-convex spectral enclosure are illustrated in Figure 1 below, see
Remark 3.1 for details. While in all cases accumulation of spectrum at iℝ is excluded at the complex interval
i
[

−𝜎max
𝜀min

,−1
2
𝜎max
𝜀min

]

, accumulation is also excluded successively i) near 0, ii) near −i 12
𝜎max
𝜀min

and iii) everywhere at iℝ
at the following thresholds for 𝜆Ωmin,

i) 𝜆Ωmin>0, ii) 𝜆Ωmin>
1
4
𝜎2max𝜀max𝜇max

𝜀2min

, iii) 𝜆Ωmin>
1
3
𝜎2max𝜀max𝜇max

𝜀2min

. (2.6)

The proof of Theorem 2.1 is given in Section 3.
For non-self-adjoint problems, it is crucial not only to establish spectral enclosures, but also resolvent estimates. The

following resolvent bounds which we prove in Section 3 also apply in the cut strip {𝑧∈ℂ⧵iℝ ∶ −𝜎max
𝜀min

≤ Im 𝑧<− 1
2
𝜎max
𝜀min

}
inside of the closure of the numerical range of the Maxwell pencil.

Theorem 2.3. For 𝜔 ∈ {𝑧∈ℂ⧵iℝ ∶ Im 𝑧 < − 1
2
𝜎max
𝜀min

}, we have

‖𝑉 (𝜔)−1‖≤ 1
min{𝜀min, 𝜇min}

1
| Im𝜔|− 1

2
𝜎max
𝜀min

⎛

⎜

⎜

⎝

1+
( 12

𝜎max
𝜀min

)2

(Re𝜔)2

⎞

⎟

⎟

⎠

,
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Figure 1: Spectral enclosure in Theorem 2.1 (yellow) in cases i) (top), ii) (middle), iii) (bottom) of (2.6) for 𝜎min=0; the

dashed lines are the boundary curves (Re𝜔)2−3(Im𝜔)2+2 𝜎max
𝜀min

| Im𝜔|=
𝜆Ωmin

𝜀max𝜇max
.

and hence, for 𝜔 ∈ {𝑧∈ℂ ∶ Im 𝑧 < −𝜎max
𝜀min

},

‖𝑉 (𝜔)−1‖≤ 1
min{𝜀min, 𝜇min}

min

⎧

⎪

⎨

⎪

⎩

1
| Im𝜔|− 1

2
𝜎max
𝜀min

⎛

⎜

⎜

⎝

1+
( 12

𝜎max
𝜀min

)2

(Re𝜔)2

⎞

⎟

⎟

⎠

, 1
| Im𝜔|− 𝜎max

𝜀min

⎫

⎪

⎬

⎪

⎭

.
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Note that the second resolvent bound in Theorem 2.3 follows since in the half-plane {𝑧∈ℂ ∶ Im 𝑧 < −𝜎max
𝜀min

} also
the classical resolvent bound in terms of the numerical range of 𝑉 (⋅) applies.

k

0

2

4

6

8

10

Figure 2: Level curves of the resolvent norm bound in Theorem 2.3 for the case 𝜀min = 𝜇min =1, 𝜎max =2, also for regions
inside the numerical range 𝑊 (𝑉 ) ={𝑧∈ℂ ∶ Im 𝑧∈[−2, 0]} of the Maxwell pencil.

The next group of new results concerns approximations of the Maxwell pencil. Since Ω is a Lipschitz domain,
we may assume that there exists a strictly increasing sequence1 of bounded Lipschitz domains (Ω𝑛)𝑛∈ℕ such that
⋃

𝑛∈ℕΩ𝑛 = Ω.
It is clear that if Ω = ℝ3, or Ω has smooth boundary, we may choose Ω𝑛 to be smooth domains for every 𝑛 ∈ ℕ.

We note that sequences of domains (Ω𝑛)𝑛∈ℕ as described above can always be constructed by setting Ω𝑛 = Ω∩𝐵(0, 𝑛),
𝑛 ∈ ℕ.

Define 𝑉𝑛(⋅) to be the Maxwell pencil in 𝐿2(Ω𝑛)3 ⊕𝐿2(Ω𝑛)3 with domain

dom(𝑉𝑛(𝜔)) = 𝐻0(curl,Ω𝑛)⊕𝐻(curl,Ω𝑛), 𝜔 ∈ ℂ, 𝑛 ∈ ℕ,

and the set of spectral pollution for the domain truncation method (𝑉𝑛)𝑛∈ℕ as

𝜎poll((𝑉𝑛)𝑛∈ℕ) ∶= {𝜔 ∈ ℂ ∶ 𝜔 ∈ 𝜚(𝑉 ),∃𝜔𝑛 ∈ 𝜎(𝑉𝑛) ∶ 𝜔𝑛 → 𝜔}. (2.7)

For approximations of an abstract linear pencil 𝐴 − 𝜆𝐵, 𝜆 ∈ ℂ, spectral pollution for the domain truncation method
was localised inside its essential numerical range in [23, Thm. 3.5]. For the Maxwell pencil 𝑉 (⋅), it is not difficult to
show that the essential numerical range 𝑊𝑒(𝑉 ) is contained in the closed horizontal strip {𝑧∈ℂ ∶ −𝜎max

𝜀min
≤ Im 𝑧≤0}.

Our second main result improves this enclosure substantially if we assume that the coefficients 𝜀, 𝜇, 𝜎 have limits
at ∞. It shows that, in fact, spectral pollution is confined to the real axis, with possible gaps on either side of 0.

Theorem 2.4. Suppose that Ω is an unbounded domain and that 𝜀−𝜀∞ id, 𝜇−𝜇∞ id and 𝜎 vanish at infinity for some
𝜀∞, 𝜇∞ > 0, i.e.

lim
𝑅→∞

{

sup
‖𝑥‖>𝑅

max
(

‖𝜀(𝑥) − 𝜀∞ id ‖, ‖𝜇(𝑥) − 𝜇∞ id ‖, ‖𝜎(𝑥)‖
)

}

= 0. (2.8)

Let 𝐿∞ be the operator pencil in the subspace 𝐻(div 0,Ω) of 𝐿2(Ω)3 defined by

𝐿∞(𝜔) ∶= curl𝜇−1∞ curl0 −𝜔2𝜀∞,
dom(𝐿∞(𝜔)) ∶= {𝐸 ∈ 𝐻0(curl,Ω)∩𝐻(div 0,Ω) ∶ curl𝐸 ∈ 𝐻(curl,Ω)},

and let (⋅) be the operator pencil in 𝐿2(Ω)3 defined by (𝜔) ∶= −𝜔(𝜔𝜀 + i𝜎), 𝜔 ∈ ℂ. Then, with 𝜆Ω𝑒,min ∶=
min 𝜎𝑒(curl curl0 |𝐻(div 0,Ω)) ≥ 0,

𝜎poll
(

(𝑉𝑛)𝑛∈ℕ
)

⊂ 𝑊𝑒(𝐿∞) =
(

−∞,−
( 𝜆Ω𝑒,min

𝜀∞𝜇∞

)1∕2 ]
∪
[( 𝜆Ω𝑒,min

𝜀∞𝜇∞

)1∕2
,∞

)

⊆ ℝ;

1We use ℕ to denote the positive integers {1, 2,…} and ℕ0 = ℕ ∪ {0}.
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and for every isolated 𝜔 ∈ 𝜎𝑝(𝑉 ) outside 𝑊𝑒(𝐿∞) ∪ 𝜎𝑒(𝑃∇(⋅)|∇𝐻̇1
0 (Ω)

), and hence outside 𝑊𝑒(𝐿∞) ∪ i
[

− 𝜎max
𝜀min

, 0
]

,
there exists a sequence 𝜔𝑛 ∈ 𝜎(𝑉𝑛), 𝑛 ∈ ℕ, such that 𝜔𝑛 → 𝜔 as 𝑛→ ∞.

The proof of Theorem 2.4 which relies on a combination of analytic and operator theoretic tools is given at the end
of Section 7.

Remark 2.5. The enclosure for spectral pollution in Theorem 2.4 is a subset of the spectral enclosure in Theorem 2.1
on the real axis, see (2.5), since 𝜆Ω𝑒,min ≥ 𝜆Ωmin ≥ 0 and 𝜀∞≤𝜀max, 𝜇∞≤𝜇max.
Note that, depending on Ω, it may happen that 𝜆Ωmin>0 or 𝜆Ω𝑒,min>𝜆

Ω
min≥0; in the former case, both enclosures for the

spectrum and spectral pollution have a gap on either side of 0, in the latter case, the enclosure for spectral pollution
has a gap on either side of 0 and thus eigenvalues in these gaps are safe from spectral pollution.

As far as we know, Theorem 2.4 is new even in the self-adjoint case, see also Theorem 7.7. In the general case, it
yields spectral exactness for every non-real, isolated eigenvalue of the Maxwell system and, if 𝜆Ω𝑒,min> 0, also for the
real eigenvalues in the gaps of the essential spectrum to either side of 0.

The following examples illustrate our results on spectral enclosure, the essential spectrum and spectral pollution.
The first example also provides an idea of the complex spectral structure that may arise even for rather simple Maxwell
systems (1.1).

Example 2.6. We consider the semi-infinite cylinder Ω = (0,∞) × (0, 𝐿2) × (0, 𝐿3) and suppose that 𝜀 = 𝜇 = id
everywhere, and 𝜎 = id if 𝑥1 ∈ (0, 1), else 𝜎 = 0, i.e. 𝜎 = 𝜒𝐾 id with 𝐾 ∶= (0, 1) × (0, 𝐿2) × (0, 𝐿3), so that the
Maxwell pencil 𝑉 (⋅) is non-self-adjoint with piecewise constant coefficients.

In the Appendix we show how Fourier expansion for 𝐸 together with [4, Thm. 6], or Theorem 5.5 below, can be
used to deduce that the essential spectrum of 𝑉 in the infinite half-cylinder Ω coincides with the essential spectrum
for the infinite cylinder ℝ × (0, 𝐿2) × (0, 𝐿3) and hence satisfies

𝜎𝑒(𝑉 ) = (−∞,−𝜋∕𝐿] ∪ [𝜋∕𝐿,+∞) ∪ (−i{0, 1∕2, 1}), 𝐿 = max{𝐿2, 𝐿3}. (2.9)

Now we truncate the domain to Ω𝑛 ∶= (0, 𝑋𝑛) × (0, 𝐿2) × (0, 𝐿3), with 𝑋𝑛 ≫ 1 and let 𝑉𝑛(⋅) be the corresponding
Maxwell pencil in (1.2). It turns out that 𝜔 ∈ ℂ is an eigenvalue of 𝑉𝑛(⋅) if and only if, for some 𝐧 = (𝑛2, 𝑛3) ∈ ℕ2

0
with |𝐧| > 0,

𝛼𝐧(𝜔) coth(𝛼𝐧(𝜔)) + 𝛽𝐧(𝜔) coth(𝛽𝐧(𝜔)(𝑋𝑛 − 1)) = 0, 𝑛∈ℕ; (2.10)

the construction of the eigenfunctions is given in the appendix. Here

𝛼𝐧(𝜔) ∶=
√

𝜋2𝑛22∕𝐿
2
2 + 𝜋

2𝑛23∕𝐿
2
3 − 𝜔(𝜔 + i),

𝛽𝐧(𝜔) ∶=
√

𝜋2𝑛22∕𝐿
2
2 + 𝜋

2𝑛23∕𝐿
2
3 − 𝜔

2,
(2.11)

where the branch of the square root is taken with non-negative real part. Note that there are no square root singularities
since 𝑧↦ 𝑧 coth(𝑧) is a meromorphic function.

A little change in the Fourier ansatz allows us to also compute the eigenvalues of the problem in the whole domain
Ω = (0,∞) × (0, 𝐿2) × (0, 𝐿3); the eigenvalue equation for 𝜔 ∈ 𝜎𝑝(𝑉 ) becomes

𝛼𝐧(𝜔) coth(𝛼𝐧(𝜔)) + 𝛽𝐧(𝜔) = 0, 𝐧 = (𝑛2, 𝑛3) ∈ ℕ2
0, |𝐧| > 0, (2.12)

which is also obtained from (2.10) in the limit 𝑋𝑛 → ∞.
The solutions to equations (2.12) and (2.10) can be plotted using a standard computational routine, see Figures 3

and 4. There are many isolated eigenvalues in the region ℝ × −i[0, 1∕2] that seem to lie along determined curves,
see Figure 3. Let us give a brief idea of what these curves are. Provided that 𝛼𝐧(𝜔) ≠ 0 and 𝜔 ≠ 0, we rewrite the
eigenvalue equation (2.12) in the form

coth(𝛼𝐧(𝜔)) = −
𝛽𝐧(𝜔)
𝛼𝐧(𝜔)

= −
√

1 + i𝜔
𝜋2𝑛22∕𝐿

2
2 + 𝜋

2𝑛23∕𝐿
2
3 − 𝜔

2 − i𝜔
.
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Im

Figure 3: Spectrum of 𝑉 in Ω=(0,∞)×(0, 1)×(0, 2). The essential spectrum is in red, the eigenvalues in blue. The yellow
region is the enclosure in Theorem 2.1 for the eigenvalues away from iℝ and ℝ.

Re

-1

-0.5

Im

Re

-0.05

-0.1

Im

Figure 4: Eigenvalues of 𝑉 in Ω50 = (0, 50) × (0, 1) × (0, 2), 𝜀 = 𝜇 = id, 𝜎(𝑥) = 𝜒(0,1)(𝑥1). The yellow area is the spectral
enclosure given by Theorem 2.1. The picture below is a zoom in the area [0, 3

2
𝜋] + i[−0.1, 0].

We follow an eigenvalue branch (𝜔𝑘)𝑘 which we write as 𝜔𝑘 = 𝜇𝑘 + i(−1∕2 + 𝛿𝑘) with 𝜇𝑘 ∈ ℝ and 𝛿𝑘 ∈ [0, 1∕2]. We
show that, if |𝜇𝑘| → ∞, then there exists a subsequence for which 𝛿𝑘 → 0 as 𝑘 → ∞. Without loss of generality, let
𝜇𝑘 → ∞. We assume that lim inf𝑘→∞ 𝛿𝑘>0 and show that this leads to a contradiction. Clearly,

𝜔𝑘(𝜔𝑘 + i) = (𝜔𝑘 + i∕2)2 + 1∕4 = 𝜇2𝑘 + 1∕4 − 𝛿2𝑘 + i2𝜇𝑘𝛿𝑘;

note that the corresponding 𝐧 for which 𝜔𝑘 satisfies (2.12) may depend on 𝑘. If we set 𝑐𝑘 ∶= 𝜋2𝑛22∕𝐿
2
2+𝜋

2𝑛23∕𝐿
2
3 > 0,

then

𝛼𝐧(𝜔𝑘) =
√

𝑐𝑘 − 𝜇2𝑘 − 1∕4 + 𝛿2𝑘 − i2𝜇𝑘𝛿𝑘,

coth(𝛼𝐧(𝜔𝑘)) = −

√

1 +
1∕2 − 𝛿𝑘 + i𝜇𝑘

𝑐𝑘 − 𝜇2𝑘 − 1∕4 + 𝛿2𝑘 − i2𝜇𝑘𝛿𝑘
.

If |𝑐𝑘 − 𝜇2𝑘|≫ 𝜇𝑘, then coth(𝛼𝐧(𝜔𝑘)) → −1 as 𝑘→ ∞ and

Re 𝛼𝐧(𝜔𝑘) ∼

⎧

⎪

⎨

⎪

⎩

√

𝑐𝑘 − 𝜇2𝑘 if 𝑐𝑘 − 𝜇2𝑘 → ∞,
𝜇𝑘𝛿𝑘

√

|𝑐𝑘−𝜇2𝑘|
if 𝑐𝑘 − 𝜇2𝑘 → −∞;

note that coth(𝛼𝐧(𝜔𝑘)) → −1 requires Re 𝛼𝐧(𝜔𝑘) → −∞, but in both cases we have Re 𝛼𝐧(𝜔𝑘) > 0 asymptotically.
It remains to consider the case |𝑐𝑘 − 𝜇2𝑘| = O(𝜇𝑘). By the assumption lim inf𝑘→∞ 𝛿𝑘 ≠ 0, there is a subsequence on
which 𝑐𝑘 − 𝜇2𝑘 − 1∕4 + 𝛿2𝑘 − i2𝜇𝑘𝛿𝑘 ∼ 𝐶𝜇𝑘 with Im𝐶 ≠ 0. Then coth(𝛼𝐧(𝜔𝑘)) → −

√

1 + i∕𝐶 . But Re 𝛼𝐧(𝜔𝑘) ∼
Re(

√

𝐶)
√

𝜇𝑘 → ±∞ implies that coth(𝛼𝐧(𝜔𝑘)) → ±1. The obtained contradiction proves lim inf𝑘→∞ 𝛿𝑘 = 0.
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For this example, we therefore see that the presence of the compactly supported conductivity generates infinitely
many eigenvalues, both in unbounded and bounded domains. These eigenvalues are approximated without spectral
pollution due to our result Theorem 2.4, since in this example 𝑊𝑒(𝐿∞) and 𝜎𝑒(𝑃∇(⋅)|∇𝐻̇1

0 (Ω)
) are subsets of the

essential spectrum of 𝑉 .
Moreover, one can verify that 𝜆Ωmin=𝜋

2∕𝐿2. This and the fact that the eigenvalues approach the line Im𝜔 = −1∕2
as |𝑥| → ∞ show that our spectral enclosure in Theorem 2.1 is sharp.

Example 2.7. In the case of zero conductivity the Maxwell pencil is self-adjoint. Taking the same domain Ω as in
Example 2.6, but now with coefficients 𝜇= id, 𝜎=0 and 𝜀=(1 + 𝛿) id with constant 𝛿 > 0 if 𝑥1 ∈ (0, 1), else 𝜀= id,
i.e. 𝜀 = (1 + 𝛿 𝜒𝐾 ) id with 𝐾 as in Example 2.6, we lose the imaginary part of the essential spectrum from Example
2.6, leaving just

𝜎𝑒(𝑉 ) = (−∞,−𝜋∕𝐿] ∪ {0} ∪ [𝜋∕𝐿,+∞), 𝐿 = max{𝐿2, 𝐿3}. (2.13)

By calculations similar to those which led to equation (2.12), the eigenvalues are the real zeros of the set of analytic
functions

𝜔↦ 𝛼̃𝐧(𝜔) coth(𝛼̃𝐧(𝜔)) + 𝛽𝐧(𝜔), 𝐧 = (𝑛2, 𝑛3) ∈ ℕ0
2, |𝐧| > 0, (2.14)

in which now 𝛼̃𝐧(𝜔) =
√

𝜋2𝑛22∕𝐿
2
2 + 𝜋

2𝑛23∕𝐿
2
3 − (1 + 𝛿)𝜔2. Taking 𝐿2 = 1, 𝐿3 = 2 and 𝛿 = 10, we have

𝜎𝑒(𝑉 ) = (−∞,−𝜋∕2] ∪ {0} ∪ [𝜋∕2,+∞). Elementary numerics show that the gap (−𝜋∕2, 𝜋∕2) contains four
eigenvalues, given approximately by ±1.4622 (both simple) and ±1.5643 (both multiplicity 2). These eigenvalues
can be approximated without pollution using a domain truncation method: this follows immediately from Theorem
2.4, by verifying that 𝜆Ω𝑒,min = 𝜋2∕4 and since 𝜎𝑒(𝑃∇(⋅)|∇𝐻̇1

0 (Ω)
) = {0} ⊂ 𝜎𝑒(𝑉 ). It may also be seen from the fact

that, just as in Example 2.6, the functions (2.14), whose zeros are the eigenvalues, are the locally uniform limits as
𝑛→ ∞ of the functions

𝜔↦ 𝛼̃𝐧(𝜔) coth(𝛼̃𝐧(𝜔)) + 𝛽𝐧(𝜔) coth(𝛽𝐧(𝜔)(𝑋𝑛 − 1)),

whose zeros are the eigenvalues for the truncated domains. Thus we have a total absence of spectral pollution in this
self-adjoint example despite the fact that, by [21, Thm. 3.8], it has 𝑊𝑒(𝑉 ) = ℝ.

3. Proofs of the spectral enclosure result and resolvent estimate
In this section we prove the spectral enclosure in Theorem 2.1 and the resolvent estimate in Theorem 2.3. We also

show some auxiliary results that are used for the spectral pollution result.
Since 𝜀 and 𝜇 are bounded and uniformly positive, the linear Maxwell pencil 𝑉 (⋅) in (2.4) admits the factorisation

𝑉 (𝜔) =
(

𝜀1∕2 0
0 𝜇1∕2

)

( − 𝜔𝐼)
(

𝜀1∕2 0
0 𝜇1∕2

)

, (3.1)

in which

 ∶=

(

−i𝜀−
1
2 𝜎𝜀−

1
2 −i𝜀−

1
2 curl𝜇−1∕2

i𝜇−1∕2curl0𝜀
− 1

2 0

)

,

dom() ∶= 𝜀1∕2𝐻0(curl,Ω)⊕ 𝜇1∕2𝐻(curl,Ω).

(3.2)

Proof of Theorem 2.1. Since the matrix multiplication operators 𝜀 and 𝜇 are bounded and uniformly positive, 𝑉 (𝜔) is
bijective if and only if so is  − 𝜔, and hence 𝜎(𝑉 ) = 𝜎(). Observe that

 − 𝜔 =
(

−i𝜀−1∕2𝜎𝜀−1∕2 − 𝜔 i𝜀−1∕2 curl𝜇−1∕2
−i𝜇−1∕2 curl0 𝜀−1∕2 −𝜔

)

=∶
(

−i𝑄 𝐵
𝐵∗ 0

)

− 𝜔; (3.3)

note that (𝜇−1∕2 curl0 𝜀−1∕2)∗ = 𝜀−1∕2 curl𝜇−1∕2 since 𝜇−1∕2 is bounded and 𝜀−1∕2 is bounded with range equal to the
whole space, see [26]. Since  is a bounded perturbation of the self-adjoint off-diagonal part of , it is obvious that
both the upper and lower half-plane contain at least one point of the resolvent set of . Hence it suffices to prove the
claimed enclosures for the approximate point spectrum 𝜎𝑎𝑝𝑝().
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So let 𝜔∈𝜎𝑎𝑝𝑝(). Then there exists a sequence ((𝑓𝑛, 𝑔𝑛)𝑡)𝑛∈ℕ⊂dom(𝐵∗)⊕ dom(𝐵), ‖𝑓𝑛‖2 + ‖𝑔𝑛‖2 = 1, with

(−i𝑄 − 𝜔)𝑓𝑛 + 𝐵𝑔𝑛 =∶ ℎ𝑛 → 0, 𝑛→ ∞, (3.4)
𝐵∗𝑓𝑛 − 𝜔𝑔𝑛 =∶ 𝑘𝑛 → 0, 𝑛→ ∞. (3.5)

If 𝜔=0, there is nothing to show. Hence we can suppose that 𝜔≠0. In this case 𝑓𝑛≠0 for sufficiently large 𝑛∈ℕ since
otherwise (3.5) would imply the contradiction 𝑔𝑛 → 0, 𝑛→∞; hence, without loss of generality we can assume that
𝑓𝑛≠0, 𝑛∈ℕ.

If we decompose 𝑔𝑛 = 𝑔1𝑛 + 𝑔
2
𝑛 with 𝑔1𝑛 ∈ (ker 𝐵)⟂, 𝑔2𝑛 ∈ ker 𝐵 = (ran𝐵∗)⟂, then ‖𝑔1𝑛‖

2 + ‖𝑔2𝑛‖
2 = ‖𝑔𝑛‖2 ≤ 1,

𝑛 ∈ ℕ. Now we take the scalar products with 𝑔1𝑛 and 𝑔2𝑛 , respectively, in (3.5), to conclude that

⟨𝐵∗𝑓𝑛, 𝑔
1
𝑛⟩ − 𝜔⟨𝑔

1
𝑛 , 𝑔

1
𝑛⟩ = ⟨𝑘𝑛, 𝑔

1
𝑛⟩ → 0, 𝑛→ ∞, (3.6)

−𝜔⟨𝑔2𝑛 , 𝑔
2
𝑛⟩ = ⟨𝑘𝑛, 𝑔

2
𝑛⟩ → 0, 𝑛→ ∞. (3.7)

Taking the scalar product with 𝑓𝑛 in (3.4), we arrive at

⟨(−i𝑄 − 𝜔)𝑓𝑛, 𝑓𝑛⟩ + ⟨𝐵𝑔1𝑛 , 𝑓𝑛⟩ = ⟨ℎ𝑛, 𝑓𝑛⟩ → 0, 𝑛→ ∞. (3.8)

If we subtract the real part of (3.8) from the real part of (3.6), it follows that

−Re𝜔‖𝑔1𝑛‖
2 − Re⟨(−i𝑄 − 𝜔)𝑓𝑛, 𝑓𝑛⟩ = Re

(

⟨𝑘𝑛, 𝑔
1
𝑛⟩ − ⟨ℎ𝑛, 𝑓𝑛⟩

)

→ 0, 𝑛→ ∞.

Since 𝑄 = 𝜀−1∕2𝜎𝜀−1∕2 is a self-adjoint matrix multiplication operator, this implies

Re𝜔
(

‖𝑓𝑛‖
2 − ‖𝑔1𝑛‖

2) → 0, 𝑛→ ∞. (3.9)

If we add the imaginary parts of (3.6) and (3.8), we obtain

− Im𝜔‖𝑔1𝑛‖
2 + Im⟨(−i𝑄 − 𝜔)𝑓𝑛, 𝑓𝑛⟩ = Im

(

⟨𝑘𝑛, 𝑔
1
𝑛⟩ + ⟨ℎ𝑛, 𝑓𝑛⟩

)

→ 0, 𝑛→ ∞,

and hence

(Im𝜔)
(

‖𝑔1𝑛‖
2 + ‖𝑓𝑛‖

2) + ⟨𝑄𝑓𝑛, 𝑓𝑛⟩ → 0, 𝑛→ ∞. (3.10)

Since ‖𝑓𝑛‖2 + ‖𝑔1𝑛‖
2 + ‖𝑔2𝑛‖

2 = ‖𝑓𝑛‖2 + ‖𝑔𝑛‖2 = 1 and ‖𝑔2𝑛‖
2 → 0, 𝑛 → ∞, by (3.7), we have ‖𝑓𝑛‖2 + ‖𝑔1𝑛‖

2 → 1,
𝑛→ ∞; hence we can assume without loss of generality that ‖𝑓𝑛‖2 + ‖𝑔1𝑛‖

2 ≥ 𝑐1 > 0 with 𝑐1 ∈ (0, 1].
Since 𝜔 ≠ 0, either (3.9) or (3.10) shows that 𝑓𝑛 → 0, 𝑛 → ∞, implies the contradiction ‖𝑔1𝑛‖ → 0, 𝑛 → ∞.

Hence, if 𝜔 ≠ 0, we can assume without loss of generality that ‖𝑓𝑛‖ ≥ 𝑐2 > 0 with 𝑐2 ∈ (0, 1]. Then (3.10) can be
equivalently written as

‖𝑓𝑛‖2

‖𝑔1𝑛‖2 + ‖𝑓𝑛‖2
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

∈[0,1]

⟨𝑄𝑓𝑛, 𝑓𝑛⟩
‖𝑓𝑛‖2

⏟⏞⏞⏟⏞⏞⏟
∈𝑊 (𝑄)

→ − Im𝜔, 𝑛→ ∞. (3.11)

Since 𝑄 is self-adjoint, its numerical range 𝑊 (𝑄) ∶= {⟨𝑄𝑓, 𝑓⟩ ∶ 𝑓 ∈ 𝐿2(Ω)3, ‖𝑓‖ = 1} satisfies 𝑊 (𝑄) =
conv 𝜎(𝑄)⊂

[

0, 𝜎max
𝜀min

]

and thus (3.11) implies

Im𝜔 ∈ −conv
(

𝑊 (𝑄) ∪ {0}
)

=
[

−
𝜎max
𝜀min

, 0
]

,

which proves the claimed estimate on the imaginary axis.
Now suppose that 𝜔 ∈ ℂ ⧵ iℝ, i.e. Re𝜔 ≠ 0. Then (3.9) implies that

‖𝑓𝑛‖
2 − ‖𝑔1𝑛‖

2 → 0, 𝑛→ ∞. (3.12)
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Noting that
(

‖𝑓𝑛‖2 + ‖𝑔1𝑛‖
2) − 2‖𝑓𝑛‖2 = ‖𝑔1𝑛‖

2 − ‖𝑓𝑛‖2 → 0, 𝑛 → ∞ (due to (3.12)) and using this in (3.10), we
obtain that

2 Im𝜔‖𝑓𝑛‖2 + ⟨𝑄𝑓𝑛, 𝑓𝑛⟩ → 0, 𝑛→ ∞, (3.13)

and hence

−1
2
⟨𝑄𝑓𝑛, 𝑓𝑛⟩
‖𝑓𝑛‖2

⏟⏞⏞⏟⏞⏞⏟
∈𝑊 (𝑄)

→ Im𝜔, 𝑛→ ∞.

This proves that

𝜔 ∈ ℂ ⧵ iℝ ⟹ Im𝜔 ∈ −1
2
𝑊 (𝑄) ⊂

[

− 1
2
𝜎max
𝜀min

,−1
2
𝜎min
𝜀max

]

. (3.14)

In order to prove the second inequality for 𝜔 ∈ ℂ ⧵ iℝ, we use the reduced minimum modulus of a closed linear
operator 𝑇 , defined by

𝛾(𝑇 ) ∶= inf
𝑥∈dom 𝑇

‖𝑇𝑥‖
dist(𝑥, ker 𝑇 )

,

see e.g. [27, Thm. IV.5.2, p. 231]. Note that 𝛾(𝑇 ) > 0 if and only if ran 𝑇 is closed; in this case 𝛾(𝑇 ) = ‖𝑇 +
‖

−1 where
𝑇 + is the Moore-Penrose inverse of 𝑇 , 𝛾(𝑇 ) = 𝛾(𝑇 ∗), see [28, Cor. IV.1.9], and, if 𝑇 ≢ 0,

𝛾(𝑇 )2 = min
(

𝜎(𝑇 ∗𝑇 ) ⧵ {0}
)

= min 𝜎(𝑇 ∗𝑇 |dom(𝑇 ∗𝑇 )∩(ker 𝑇 )⟂ ), (3.15)

cf. [29] for the bounded case. In the unbounded case, 𝑇 ∗𝑇 is self-adjoint and its dense domain dom(𝑇 ∗𝑇 ) is a core for
𝑇 , see [27, Thm. V.3.24]. Hence

𝛾(𝑇 )2 = inf
𝑥∈dom 𝑇∩(ker 𝑇 )⟂

‖𝑇𝑥‖2

‖𝑥‖2
= inf
𝑥∈dom 𝑇 ∗𝑇∩(ker 𝑇 )⟂

‖𝑇𝑥‖2

‖𝑥‖

= inf
𝑥∈dom 𝑇 ∗𝑇∩(ker 𝑇 )⟂

(𝑇 ∗𝑇𝑥, 𝑥)
‖𝑥‖2

= min 𝜎(𝑇 ∗𝑇 |dom(𝑇 ∗𝑇 )∩(ker 𝑇 )⟂ ).

For 𝐵=i𝜀−1∕2 curl𝜇−1∕2, we have dom𝐵=𝜇1∕2𝐻(curl,Ω), ker 𝐵=𝜇1∕2 ker curl and thus

𝛾(𝐵) = inf
𝑥∈𝜇1∕2𝐻(curl,Ω)

‖𝜀−1∕2 curl𝜇−1∕2𝑥‖
dist(𝑥, 𝜇1∕2 ker curl)

= inf
𝑢∈𝐻(curl,Ω)

‖𝜀−1∕2 curl 𝑢‖
dist(𝜇1∕2𝑢, 𝜇1∕2 ker curl)

≥ 1
𝜀max

1∕2
inf

𝑢∈𝐻(curl,Ω)

‖ curl 𝑢‖
dist(𝜇1∕2𝑢, 𝜇1∕2 ker curl)

≥ 1
𝜀max

1∕2𝜇max
1∕2

inf
𝑢∈𝐻(curl,Ω)

‖ curl 𝑢‖
dist(𝑢, ker curl)

= 1
𝜀max

1∕2𝜇max
1∕2

𝛾(curl) = 1
𝜀max

1∕2𝜇max
1∕2

𝛾(curl0).

Here, we have used 𝛾(𝑇 ) = 𝛾(𝑇 ∗) to replace curl by curl0 at the last step. Also, in the second estimate, we have used
the equality

dist
(

𝜇1∕2𝑢, 𝜇1∕2 ker curl
)

= inf
𝑦∈ker curl

‖

‖

‖

𝜇1∕2𝑢 − 𝜇1∕2𝑦‖‖
‖

≤ 𝜇max
1∕2dist(𝑢, ker curl).

If 𝜆Ωmin = 0, then ran curl0 is not closed and hence 𝛾(curl0) = 0. If 𝜆Ωmin > 0, then ran curl0 is closed and thus
(ker curl0)⟂ = ran curl ⊂ 𝐻(div 0,Ω). Hence, by (3.15), in both cases, it follows that

𝛾(𝐵) ≥ 1
𝜀max

1∕2𝜇max
1∕2
𝜆Ωmin

1∕2. (3.16)
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Now we can estimate

𝛾(𝐵)2‖𝑓𝑛‖2=𝛾(𝐵)2‖𝑔1𝑛‖
2−𝛾(𝐵)2

(

‖𝑔1𝑛‖
2−‖𝑓𝑛‖2

)

≤‖𝐵𝑔1𝑛‖
2−𝛾(𝐵)2

(

‖𝑔1𝑛‖
2−‖𝑓𝑛‖2

)

and further, since 𝑔2𝑛 ∈ ker 𝐵 and ‖𝑓𝑛‖ ≥ 𝑐2 because 𝜔 ≠ 0,

𝛾(𝐵)2 ≤
‖𝐵𝑔𝑛−(−i𝑄−𝜔)𝑓𝑛‖2

‖𝑓𝑛‖2
+
‖(−i𝑄−𝜔)𝑓𝑛‖2

‖𝑓𝑛‖2
−𝛾(𝐵)2

‖𝑔1𝑛‖
2−‖𝑓𝑛‖2

‖𝑓𝑛‖2
. (3.17)

For the middle term on the right-hand side we have

‖(−i𝑄 − 𝜔)𝑓𝑛‖2

‖𝑓𝑛‖2
=

‖𝑄𝑓𝑛‖2

‖𝑓𝑛‖2
+ 2 Im𝜔

⟨𝑄𝑓𝑛, 𝑓𝑛⟩
‖𝑓𝑛‖2

+ |𝜔|2. (3.18)

Using that 𝑄 is self-adjoint, we can estimate

‖𝑄𝑓𝑛‖2

‖𝑓𝑛‖2
=

⟨𝑄𝑓𝑛, 𝑄𝑓𝑛⟩
‖𝑓𝑛‖2

≤ ‖𝑄‖
⟨𝑄𝑓𝑛, 𝑓𝑛⟩
‖𝑓𝑛‖2

, 𝑛 ∈ ℕ. (3.19)

Altogether, by (3.17), (3.18), (3.19) and since Im𝜔 ≤ 0 by (3.14), we arrive at

𝛾(𝐵)2≤
(

‖𝑄‖−2| Im𝜔|
) ⟨𝑄𝑓𝑛, 𝑓𝑛⟩

‖𝑓𝑛‖2
+|𝜔|2+

‖𝐵𝑔𝑛−(−i𝑄−𝜔)𝑓𝑛‖2

‖𝑓𝑛‖2
− 𝛾(𝐵)2

‖𝑔1𝑛‖
2−‖𝑓𝑛‖2

‖𝑓𝑛‖2
.

If we use (3.13) and that by (3.4)and (3.12), the last two terms tend to 0, together with ‖𝑄‖ = ‖𝜀−1∕2𝜎𝜀−1∕2‖ ≤ 𝜎max
𝜀min

,
we obtain

𝛾(𝐵)2 ≤
(

‖𝑄‖ − 2| Im𝜔|
)

2| Im𝜔| + |𝜔|2 = 2‖𝑄‖| Im𝜔| − 3| Im𝜔|2 + |Re𝜔|2.

Now the remaining claimed inequality follows from (3.16).

The following remark details the three different possible shapes of the spectral enclosure near the imaginary axis
and the corresponding thresholds of 𝜆Ωmin.

Remark 3.1. Theorem 2.1 shows that 𝜎(𝑉 ) ⧵ iℝ cannot approach 𝜎(𝑉 ) ∩ iℝ ⊂ i
[

− 𝜎max
𝜀min

, 0
]

in the lower half

i
[

− 𝜎max
𝜀min

,− 1
2
𝜎max
𝜀min

]

and that there are three thresholds of 𝜆Ωmin for where 𝜎(𝑉 ) ⧵ iℝ may approach the upper half

i
[

− 1
2
𝜎max
𝜀min

, 0
]

, see Figure 1:

i) if 𝜆Ωmin>0, then 𝜎(𝑉 )⧵iℝ does not approach i
[

− 1
2
𝜎max
𝜀min

, 0
]

near 0;

ii) if 𝜆Ωmin>
𝜎2max𝜀max𝜇max

4𝜀2min
, then 𝜎(𝑉 )⧵ iℝ does not approach i

[

− 1
2
𝜎max
𝜀min

,0
]

near −i 12
𝜎max
𝜀min

;

iii)if 𝜆Ωmin>
𝜎2max𝜀max𝜇max

3𝜀2min
, then 𝜎(𝑉 )⧵iℝ does not approach i

[

− 1
2
𝜎max
𝜀min

, 0
]

at all.

The following special case in Theorem 2.1 of constant matrix functions 𝜀, 𝜎, but still varying 𝜇, is useful e.g. for
‘limiting problems at ∞’ if they exist.

Corollary 3.2. If the matrix functions 𝜀, 𝜎 are constant multiples of the identity, 𝜀 ≡ 𝜀∞ id > 0, 𝜎 ≡ 𝜎∞ id ≥ 0, then
𝜀min=𝜀max=𝜀∞, 𝜎min=𝜎max=𝜎∞ and thus

𝜎(𝑉 ) ⊂ i
[

−
𝜎∞
𝜀∞

, 0
]

∪
{

𝜔∈ℂ⧵iℝ ∶ Im𝜔 = −1
2
𝜎∞
𝜀∞

, (Re𝜔)2+1
4
𝜎2∞
𝜀2∞

≥
𝜆Ωmin

𝜀∞𝜇max

}

;

in particular, 𝜎(𝑉 ) ∩ iℝ⊂ i
[

− 𝜎∞
𝜀∞
, 0
]

is isolated from 𝜎(𝑉 ) ⧵ iℝ if 𝜆Ωmin>
1
4
𝜎∞𝜇max
𝜀∞

.
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Next we prove Theorem 2.3 providing a resolvent norm estimate of 𝑉 (⋅).

Proof of Theorem 2.3. Let 𝜔∈ℂ⧵iℝ, Im𝜔<− 1
2
𝜎max
𝜀min

or 𝜔 ∈ iℝ, Im𝜔 < −𝜎max
𝜀min

. Then 𝜔∈𝜚(𝑉 ) = 𝜚() by Theorem

2.1 and ‖𝑉 (𝜔)−1‖≤ 1
min{𝜀min,𝜇min}

‖(−𝜔)−1‖ due to the factorisation (3.1) where  is the operator matrix in (3.3). In
order to estimate the resolvent of , we continue to use the notation𝑄=𝜀−1∕2𝜎𝜀−1∕2, 𝐵=𝜀−1∕2 curl𝜇−1∕2 introduced
in (3.3).

Since  is a self-adjoint operator perturbed by the bounded operator diag(−i𝑄, 0) and 𝑊 (𝑄) ⊂ [0, 𝑞max] with
𝑞max ∶=

𝜎max
𝜀min

, a numerical range argument for  yields the resolvent estimate ‖(−𝜔)−1‖ ≤ 1
| Im𝜔|−𝑞max

for all 𝜔 ∈ ℂ,
Im𝜔 < −𝑞max.

Now let 𝜔=𝑥+i𝑦 with 𝑥>0, 𝑦<− 𝑞max
2 ; the proof is analogous if 𝑥<0. Let 𝜑 ∈ (0, 𝜋2 ) be the argument of 𝑥+i 𝑞max

2 .
Let  = diag(e−i𝜑, ei𝜑) in 𝐿2(Ω)3 ⊕ 𝐿2(Ω)3, and let 𝑆 ∶={𝑧 ∈ ℂ ∶ arg(𝑧 − 𝛾) ∈ (−𝜋 + 𝜑,−𝜑)} be the open sector
with vertex 𝛾 ∶=𝑥 − i𝑞max∕2 and semi-angle 𝜋

2 −𝜑. Note that 𝜔 ∈ 𝑆.
We claim that 𝑆 ∩𝑊 (,) = ∅, where 𝑊 (,) ∶= {𝑧 ∈ ℂ ∶ 0 ∈𝑊 (−𝑧)}. Then [23, Thm. 4.1 ii)]

implies 𝑆 ⊂ 𝜚() with
‖( − 𝑧)−1‖ ≤ 1

cos(𝜑) dist(𝑧, 𝜕𝑆)
, 𝑧 ∈ 𝑆.

𝑞max
2

− 𝑞max
2

−𝑞max

𝑥

𝑆

𝜑
𝜑

𝜑 𝜑

𝛾

𝑧

𝑧 + i𝑞max

𝜔

𝜑

Re

Im

Figure 5: The geometry in the proof of Theorem 2.3: The blue line measures the distance of 𝜔= 𝑥+i𝑦 to 𝜕𝑆; since the
lines meet at a right angle, the angle between the blue and the vertical dashed lines is also 𝜑.

By means of Figure 5, one can check that for 𝑧 = 𝜔 we have dist(𝑧, 𝜕𝑆) = (|𝑦|− 𝑞max
2 ) cos(𝜑) and cos2(𝜑) =

𝑥2∕(𝑥2 + ( 𝑞max
2 )2), which implies

‖( − 𝜔)−1‖ ≤ 1
|𝑦| − 𝑞max

2

(

1 +
( 𝑞max

2 )2

𝑥2
)

.

To prove that 𝑆 ∩ 𝑊 (,) = ∅, assume that there exists 𝑧 ∈ 𝑆 ∩ 𝑊 (,). This implies that there is a
normalised sequence ((𝑓𝑛, 𝑔𝑛)𝑡)𝑛∈ℕ ⊂ dom() with

⟨

( − 𝑧)(𝑓𝑛, 𝑔𝑛)𝑡, (𝑓𝑛, 𝑔𝑛)𝑡
⟩

→ 0 as 𝑛→∞; in particular, the
sequence also converges to 0 if we take imaginary parts. Let 𝑡𝑛 ∶= ‖𝑓𝑛‖2 ∈ [0, 1]. Then one can write ⟨𝑄𝑓𝑛, 𝑓𝑛⟩ = 𝑎𝑛𝑡𝑛
for some 𝑎𝑛 ∈ 𝑊 (𝑄) ⊂ [0, 𝑞max]. We obtain

Im
(

𝑡𝑛e−i𝜑(i𝑎𝑛 + 𝑧) + (1 − 𝑡𝑛)ei𝜑𝑧
)

→ 0, 𝑛→ ∞.

Note that we take convex linear combinations of points in e−i𝜑(𝑧+i[0, 𝑞max]) and {ei𝜑𝑧}. Using that 𝑧∈𝑆, one can see
that both of these compact sets are in the open lower complex half-plane, so no sequence of convex linear combinations
of points therein can converge to the real line. This contradiction proves 𝑆 ∩𝑊 (,)=∅.

S. Bögli, F. Ferraresso, M. Marletta, C. Tretter: Preprint submitted to Elsevier Page 13 of 36



Spectral analysis and domain truncation for Maxwell’s equations

4. Spectral relations between 𝑉 and 
In this section we establish the intimate relations between the spectra of the linear Maxwell pencil 𝑉 (⋅) in the

product space 𝐿2(Ω,ℂ3) ⊕ 𝐿2(Ω,ℂ3) and of a quadratic operator pencil  in the first component 𝐿2(Ω,ℂ3). They
will be used later for our description of the essential spectrum and for our results on spectral pollution for the original
Maxwell problem.

The quadratic operator pencil  in 𝐿2(Ω)3 appears naturally in the matrix representation of the resolvent of 𝑉 (⋅),
see Theorem 4.5, and is defined by

(𝜔) ∶= curl𝜇−1curl0 − 𝜔(𝜔𝜀 + i𝜎),

dom((𝜔)) ∶= {𝐸 ∈ 𝐻0(curl,Ω) ∶ 𝜇−1 curl𝐸 ∈ 𝐻(curl,Ω)}.
(4.1)

For studying the relations between the Maxwell pencil 𝑉 (⋅) and  we require some technical lemmas.

Lemma 4.1. In 𝐿2(Ω)3 define the operators 𝑇0 ∶= 𝜇−1∕2curl0, dom 𝑇0 =𝐻0(curl,Ω), and (𝜔) ∶= −𝜔(𝜔𝜀 + i𝜎),
𝜔 ∈ ℂ. Then 𝐶∞

𝑐 (Ω)3 is a core of (𝑇 ∗
0 𝑇0 + 𝐼)

1∕2, dom((𝑇 ∗
0 𝑇0 + 𝐼)

1∕2)=𝐻0(curl,Ω), and, for all 𝜔∈ℂ,

(𝜔) = (𝑇 ∗
0 𝑇0+𝐼)

1∕2 (𝐼+(𝑇 ∗
0 𝑇0+𝐼)

−1∕2((𝜔)−𝐼
)

(𝑇 ∗
0 𝑇0+𝐼)

−1∕2) (𝑇 ∗
0 𝑇0+𝐼)

1∕2;

further, for all 𝑡 ≥ 𝜀−1∕2min , (i𝑡) is boundedly invertible,

‖

‖

‖

(

𝐼+(𝑇 ∗
0 𝑇0 + 𝐼)

−1∕2((i𝑡)−𝐼
)

(𝑇 ∗
0 𝑇0+𝐼)

−1∕2
)−1

‖

‖

‖

≤ 1,

‖(i𝑡)−1‖ ≤ 1.
(4.2)

Proof. Since 𝑇 ∗
0 𝑇0 is self-adjoint and non-negative, the square-root (𝑇 ∗

0 𝑇0+𝐼)
1∕2 ≥𝐼 is self-adjoint, uniformly positive

and boundedly invertible with
‖(𝑇 ∗

0 𝑇0 + 𝐼)
−1∕2

‖ ≤ 1 (4.3)

and, e.g. by [30, Prop. 3.1.9], dom((𝑇 ∗
0 𝑇0+𝐼)

1∕2) = dom((𝑇 ∗
0 𝑇0)

1∕2) = dom(|𝑇0|) = dom 𝑇0 =𝐻0(curl,Ω). By the
second representation theorem [27, Thm. VI.2.23], a subspace of 𝐿2(Ω)3 is a core of (𝑇 ∗

0 𝑇0+𝐼)
1∕2 if and only if it is

a core of the associated quadratic form

𝔱[𝑢, 𝑣] = ⟨𝑇0𝑢, 𝑇0𝑣⟩ + ⟨𝑢, 𝑣⟩, dom 𝔱 = dom 𝑇0 = 𝐻0(curl,Ω).

Since 𝐶∞
𝑐 (Ω)3 is a core of 𝑇0, the first claim follows. The second claim, i.e. the operator factorisation of (𝜔), is

obvious since (𝜔) is bounded.
For all 𝜔 = i𝑡 with 𝑡 ≥ 𝜀−1∕2min , we have (i𝑡) − 𝐼 ≥ 0 and hence

𝐼+(𝑇 ∗
0 𝑇0+𝐼)

−1∕2((i𝑡)−𝐼
)

(𝑇 ∗
0 𝑇0+𝐼)

−1∕2 ≥ 𝐼, (4.4)

which implies the first estimate in (4.2); the latter and (4.3) yield the last estimate.

Lemma 4.2. Let 𝜔∈𝜚(). Then curl0 (𝜔)−1 is a bounded operator in 𝐿2(Ω)3 and (𝜔)−1 curl, curl0 (𝜔)−1curl are
closable operators with bounded closures in 𝐿2(Ω)3.

Proof. The operator curl0 (𝜔)−1 is bounded in 𝐿2(Ω)3 since dom() ⊂ dom(curl0) = 𝐻0(curl,Ω) and (𝜔) is a
closed operator. Since ((𝜔)−1 curl)∗ = curl0 (𝜔)−∗ is bounded by the same argument, (𝜔)−1 curl has a bounded
closure in 𝐿2(Ω)3. The boundedness of curl0 (𝜔0)−1 curl for 𝜔0 = i𝑡 with 𝑡 ≥ 𝜀−1∕2min follows from Lemma 4.1 using
that curl0(𝑇 ∗

0 𝑇0 + 𝐼)
−1∕2 and (𝑇 ∗

0 𝑇0 + 𝐼)
−1∕2 curl are bounded. For a general 𝜔 ∈ 𝜚() the boundedness then follows

from
curl0 (𝜔)−1 curl = curl0 (𝜔0)−1 curl + curl0 (𝜔)−1((𝜔) −(𝜔0))(𝜔0)−1 curl

since (𝜔) = −𝜔(𝜔𝜀 + i𝜎) is a bounded operator.
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Remark 4.3. The claims in Lemma 4.2 continue to hold if we replace(𝜔)−1 by ((𝜔)+𝐾)−1 for any bounded operator
𝐾 in 𝐿2(Ω)3. In fact, if we choose 𝑡≥𝜀−1∕2min (1+‖𝐾‖)1∕2 in Lemma 4.1, then Re ((i𝑡)+𝐾−𝐼) ≥ 𝑡2𝜀min𝐼+Re𝐾−𝐼 ≥
(1+‖𝐾‖)𝐼−(𝐼−Re𝐾) ≥ 0. Hence the numerical range of the modified operator on the left-hand side of (4.4) satisfies

dist
(

0,𝑊
(

𝐼+(𝑇 ∗
0 𝑇0+𝐼)

−1∕2((i𝑡)+𝐾−𝐼
)

(𝑇 ∗
0 𝑇0+𝐼)

−1∕2)) ≥ 1

which implies the first estimate in (4.2) with (i𝑡) replaced by (i𝑡) +𝐾 . Now the proof of Lemma 4.2 can be
completed if we note that (𝜔)+𝐾 is still bounded.
Remark 4.4. The resolvent estimate in Lemma 4.1 for the quadratic operator pencil  can be made more precise and
extended to the whole region

{

𝑧∈ℂ ∶ Im 𝑧∉
[

0,− 1
2
𝜎max
𝜀min

,
]}

⧵ i
[

0,−𝜎max
𝜀min

]

, e.g. on i(0,∞) by

‖(i𝑡)−1‖ ≤ 1
𝑡2𝜀min

, 𝑡 ∈ (0,∞). (4.5)

Since we focus on the Maxwell pencil 𝑉 (⋅) in this paper, we restrict ourselves to the properties in Lemmas 4.1 and 4.2
which we need in order to investigate absence of spectral pollution for 𝑉 (⋅).
Theorem 4.5. The Maxwell pencil 𝑉 (⋅) in (2.4) and the quadratic pencil  in (4.1) satisfy

𝜚(𝑉 ) ⧵ {0} = 𝜚() ⧵ {0}, 𝜎(𝑉 ) ⧵ {0} = 𝜎() ⧵ {0}, (4.6)

and the resolvent of 𝑉 (⋅) is given by

𝑉 (𝜔)−1=

(

𝜔(𝜔)−1 i(𝜔)−1curl𝜇−1

−i𝜇−1curl0 (𝜔)−1 𝜔−1(−𝜇−1+𝜇−1curl0 (𝜔)−1 curl𝜇−1)

)

(4.7)

for 𝜔∈𝜚(𝑉 ). Moreover,

𝜎𝑝(𝑉 ) ⧵ {0} = 𝜎𝑝() ⧵ {0}, 𝜎𝑐(𝑉 ) ⧵ {0} = 𝜎𝑐() ⧵ {0}, 𝜎𝑟(𝑉 ) = 𝜎𝑟() = ∅,

and 𝜎𝑒𝑘(𝑉 ) = 𝜎𝑒𝑘() and 0 ∈ 𝜎𝑒𝑘(𝑉 ) for 𝑘 = 1, 2, 3, 4.
Proof. Suppose that 𝜔 ∈ 𝜚() ⧵ {0}. Then, by Lemma 4.2, all entries in the operator matrix on the right-hand
side of (4.7) are bounded and it is easy to check that the latter is a two-sided inverse for 𝑉 (𝜔). This proves
𝜔∈𝜚(𝑉 ) ⧵ {0}. Vice versa, let 𝜔 ∈ 𝜚(𝑉 ) ⧵ {0}. Then, for arbitrary 𝑓 ∈ 𝐿2(Ω)3, there is a unique (𝑢, 𝑣)𝑡∈dom(𝑉 (𝜔))
=𝐻0(curl,Ω)⊕𝐻(curl,Ω) such that 𝑉 (𝜔)(𝑢, 𝑣)t =(𝑓, 0)t or, equivalently,

(−i𝜎 − 𝜔𝜀)𝑢 + i curl 𝑣 = 𝑓,
−i curl0 𝑢 − 𝜔𝜇𝑣 = 0.

Because 𝜇 is strictly positive and 𝜔 ≠ 0, we can solve the second equation for 𝑣 to obtain 𝑣=−i𝜔−1𝜇−1 curl0 𝑢. Since
𝑣∈𝐻(curl,Ω), the latter yields 𝑢∈dom(𝜔) and, inserted in the first equation,

𝜔−1(𝜔)𝑢 =
(

− i𝜎 − 𝜔𝜀 + 𝜔−1 curl𝜇−1 curl0
)

𝑢 = 𝑓.

Since 𝑓 ∈ 𝐿2(Ω)3 and 𝑢 was unique, it follows that 𝜔 ∈ 𝜚() ⧵ {0}.
If we set 𝑓 =0 in the above reasoning, it follows that dim ker 𝑉 (𝜔) ≤ dim ker (𝜔). Conversely, if 𝑢 ∈ ker (𝜔)

and we set 𝑣 ∶=−i𝜔−1𝜇−1 curl0 𝑢, then the above relations show that (𝑢, 𝑣)t ∈ ker 𝑉 (𝜔). Altogether this proves that
dim ker 𝑉 (𝜔) = dim ker (𝜔) for 𝜔 ≠ 0 and hence, in particular, the identity for the point spectra.

The claim on the residual spectra follows from [25, Lemma III.5.4] since 𝑉 (𝜔) and (𝜔) are 𝐽 -self-adjoint with
respect to complex conjugation 𝐽 in𝐿2(Ω)3⊕𝐿2(Ω)3 and𝐿2(Ω)3, respectively. Then 𝜎𝑐(𝑉 )⧵{0}=(𝜎(𝑉 )⧵𝜎𝑝(𝑉 ))⧵{0}=
(𝜎()⧵𝜎𝑝())⧵{0}=𝜎𝑐()⧵{0}.

Due to [25, Thm. IX.1.6], the 𝐽 -self-adjointness also implies that all 𝜎𝑒𝑘(𝑉 ), 𝑘 = 1, 2, 3, 4, and all 𝜎𝑒𝑘(),
𝑘 = 1, 2, 3, 4, coincide. The last claim is proved if we show that 𝜎𝑒𝑘(𝑉 ) = 𝜎𝑒𝑗() for any 𝑗, 𝑘 ∈ {1, 2, 3, 4}. Here
we show that 𝜎𝑒2(𝑉 ) ⊃ 𝜎𝑒2() and 𝜎𝑒4(𝑉 ) ⊂ 𝜎𝑒4(). First we consider 𝜔 ∈ ℂ ⧵ {0}.

To show 𝜎𝑒2(𝑉 ) ⊃ 𝜎𝑒2(), suppose that 𝜔 ∈ 𝜎𝑒2() ⧵ {0}. Then, by [25, Thm. IX.1.3] there exists a singular
sequence (𝑢𝑛)𝑛∈ℕ ⊂ dom(𝜔) of (𝜔) in 0, i.e. ‖𝑢𝑛‖ = 1, 𝑛 ∈ ℕ, 𝑢𝑛 ⇀ 0 and (𝜔)𝑢𝑛 → 0 for 𝑛 → ∞. If we set
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𝑣𝑛 ∶=−i𝜔−1𝜇−1 curl0 𝑢𝑛, 𝑛 ∈ ℕ, then 𝑣𝑛∈𝐻(curl,Ω) and the sequence with elements𝑤𝑛 ∶=(𝑢𝑛, 𝑣𝑛)t∕
√

‖𝑢𝑛‖2+‖𝑣𝑛‖2

∈ dom𝑉 (𝜔) satisfies ‖𝑤𝑛‖ = 1, 𝑛 ∈ ℕ, and 𝑉 (𝜔)𝑤𝑛 = (𝜔−1(𝜔)𝑢𝑛, 0)t∕
√

‖𝑢𝑛‖2+‖𝑣𝑛‖2 → 0 for 𝑛→ ∞. In addition,
for any 𝜔0 ∈ 𝜚(),

𝑣𝑛 = −i𝜔−1𝜇−1 curl0 (𝜔0)−1(𝜔0)𝑢𝑛
= −i𝜔−1𝜇−1 curl0 (𝜔0)−1

(

(𝜔)𝑢𝑛 + (𝜔(𝜔 + i𝜎) − 𝜔0(𝜔0𝜀 + i𝜎))𝑢𝑛
)

⇀ 0;

here we have used (𝜔)𝑢𝑛 → 0, 𝑢𝑛 ⇀ 0 and that curl0 (𝜔0)−1 is bounded by Lemma 4.2. Now
√

‖𝑢𝑛‖2+‖𝑣𝑛‖2 ≥
‖𝑢𝑛‖=1 yields 𝑤𝑛⇀0. This proves 𝜔∈𝜎𝑒2() ⧵ {0}.

To show 𝜎𝑒4(𝑉 )⊂𝜎𝑒4(), assume that 𝜔∉𝜎𝑒4()⧵{0}. Then, by [25, Thm. IX.1.4] there exists a compact operator
𝐾 in 𝐿2(Ω)3 such that 0∈𝜚((𝜔) +𝐾). If we set ∶=diag(𝐾, 0), then  is compact in 𝐿2(Ω)3 ⊕𝐿2(Ω)3 and, using
Remark 4.3, we conclude that the operator matrix obtained from the right-hand side of (4.7) by replacing (𝜔)−1 by
((𝜔) + 𝐾)−1 is bounded and a two-sided inverse for 𝑉 (𝜔) + and hence 0∈𝜚(𝑉 (𝜔) +). Now [25, Thm. IX.1.4]
yields that 0∉𝜎𝑒4(𝑉 (𝜔)), as required.

Finally, it remains to consider 𝜔 = 0. It is not difficult to see that 𝑉 (0)(0,𝐻)t = 0 for all 𝐻 ∈ ker curl and
hence {0} ⊕ ∇𝐻̇1

0 (Ω) ⊂ ker 𝑉 (0). This proves 0 ∈ 𝜎𝑒2(𝑉 ). Further, (0) = curl𝜇−1 curl0 is self-adjoint with
∇𝐻̇1

0 (Ω)⊂ker curl0=ker (0) and hence also 0 ∈ 𝜎𝑒2().

5. The essential spectrum of the Maxwell problem
In this section we determine the essential spectrum of 𝑉 (⋅) via the essential spectrum of the quadratic operator

pencil . Here we assume that Ω is an infinite domain and that 𝜎, 𝜇, 𝜀 have limits 0, 𝜀∞id, 𝜇∞id in the sense of (2.8)
at infinity, as in Theorem 2.4; note that 𝜀∞, 𝜇∞ > 0 by assumption (2.1).

To this end, we work in the Helmholtz decomposition 𝐿2(Ω) =∇𝐻̇1
0 (Ω)⊕𝐻(div 0,Ω), see e.g. [4, Lemma 11],

and denote by 𝑃ker(div) the corresponding orthogonal projection from onto𝐻(div 0,Ω). We begin with a general result
which applies in a wider context.

Proposition 5.1. Let 𝑚 ∶ Ω → ℂ3×3 be a tensor-valued function with

lim
𝑅→∞

sup
‖𝑥‖>𝑅

‖𝑚(𝑥)‖ = 0. (5.1)

Then 𝑚𝑃ker(div) is compact from (𝐻(curl,Ω), ‖⋅‖𝐻(curl,Ω)) to (𝐿2(Ω)3, ‖⋅‖𝐿2(Ω)3 ).

Proof. For any 𝛿 > 0 we can write 𝑚 = 𝑚𝑐 + 𝑚𝛿 where 𝑚𝛿 is a bounded multiplication operator with ‖𝑚𝛿‖ < 𝛿 and
𝑚𝑐 has compact support in some domain Ω𝑅 ∶= Ω ∩ 𝐵(0, 𝑅) for sufficiently large 𝑅 > 0. We show that 𝑚𝑐𝑃ker(div)
is compact for every 𝛿 > 0. Since ‖𝑚𝑃ker(div)−𝑚𝑐𝑃ker(div)‖(𝐻(curl,Ω),𝐿2(Ω)3) ≤ 𝛿 vanishes as 𝛿 → 0, we deduce that
𝑚𝑃ker(div) is the norm limit of the compact operators 𝑚𝑐𝑃ker(div) and hence compact.

Let 𝜒𝑅 be a smooth cut-off function with 𝜒𝑅 = 1 on supp(𝑚𝑐) ⊂ Ω𝑅 and 𝜒 = 0 outside Ω𝑅. Then there exists a
constant 𝐶𝑅 > 0 such that, for all 𝑢 ∈ 𝐻(curl,Ω),

‖(𝜒𝑅𝑃ker(div)𝑢)|Ω𝑅‖𝐻(curl,Ω𝑅)∩𝐻(div,Ω𝑅) ≤ 𝐶𝑅‖𝑢‖𝐻(curl,Ω),

where we use that div(𝜒𝑅𝑃ker(div)𝑢) = ∇𝜒𝑅 ⋅ 𝑃ker(div)𝑢 and curl(𝜒𝑅𝑃ker(div)𝑢) = ∇𝜒𝑅 × 𝑃ker(div)𝑢 + 𝜒𝑅 curl 𝑢 since
curl𝑃ker(div)𝑢 = curl 𝑢. The compactness of 𝑚𝑐𝑃ker(div) follows from the compactness of the composition

𝑚𝑐𝑃ker(div)𝑢 = 𝑚𝑐 𝜄(𝜒𝑅𝑃ker(div)𝑢)|Ω𝑅 ;

here 𝜄 is the compact embedding of 𝐻0(curl,Ω𝑅) ∩𝐻(div,Ω𝑅) in 𝐿2(Ω𝑅)3, see [31].

Definition 5.2. We define quadratic pencils of closed operators acting in the Hilbert space 𝐻(div 0,Ω) equipped with
the 𝐿2(Ω)3-norm by

𝐿𝜇(𝜔)∶=curl𝜇−1 curl0 −𝜀∞𝜔2 id,
dom(𝐿𝜇(𝜔))∶={𝑢 ∈ 𝐻0(curl,Ω)∩𝐻(div 0,Ω) ∶ 𝜇−1 curl 𝑢∈𝐻(curl,Ω)},

𝜔∈ℂ,
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and

𝐿∞(𝜔)∶=curl𝜇−1∞ curl0 −𝜀∞𝜔2 id,
dom(𝐿∞(𝜔))∶={𝑢 ∈ 𝐻0(curl,Ω)∩𝐻(div 0,Ω) ∶ curl 𝑢∈𝐻(curl,Ω)},

𝜔∈ℂ;

note that 𝐿∞ can be regarded as a special case of 𝐿𝜇, namely when 𝜇=𝜇∞id.

Lemma 5.3. The following are true.
(i) The operator 𝐿𝜇(𝜔)−1 curl is closable with bounded closure from 𝐿2(Ω)3 to 𝐻(div 0,Ω).

(ii) For 𝜔 = i𝑡 with 𝑡 ≥ 𝜀−1∕2min , the operator curl0 𝐿∞(𝜔)−1 is bounded in 𝐻(div 0,Ω), and also as an operator from
𝐻(div 0,Ω) to 𝐻(curl,Ω) with

‖ curl0 𝐿∞(𝜔)−1‖(𝐻(div 0,Ω),𝐻(curl,Ω)) ≤
(

𝜇∞
𝜀∞|𝜔|2

+ 𝜇2∞

)1∕2
. (5.2)

Proof. The boundedness claims follow analogously as in Lemma 4.2, using that 𝑢 ∈ 𝐻(div 0,Ω) satisfies ‖𝑢‖𝐻(div,Ω) =
‖𝑢‖. It remains to prove (5.2). Noting that ‖𝐿∞(𝜔)−1‖ ≤ 1∕(𝜀∞𝑡2) ≤ 1∕(𝜀∞|𝜔2

|), we estimate, for 𝑢 ∈ 𝐿2(Ω)3,

‖ curl0 𝐿∞(𝜔)−1𝑢‖2 = 𝜇∞
⟨

curl𝜇−1∞ curl0 𝐿∞(𝜔)−1𝑢, 𝐿∞(𝜔)−1𝑢
⟩

|

= 𝜇∞
⟨

(𝐼 − 𝜀∞𝑡2𝐿∞(𝜔)−1)𝑢, 𝐿∞(𝜔)−1𝑢
⟩

≤ 𝜇∞
⟨

𝑢, 𝐿∞(𝜔)−1𝑢
⟩

≤ 𝜇∞
1

𝜀∞|𝜔|2
‖𝑢‖2

and, since 0 ≤ 𝐼 − 𝜀∞𝑡2𝐿∞(𝜔)−1 ≤ 𝐼 ,

‖ curl curl0 𝐿∞(𝜔)−1‖(𝐿2(Ω)3,𝐿2(Ω)3)=𝜇∞ sup
𝑢∈𝐿2(Ω)3
‖𝑢‖=1

⟨

(𝐼 − 𝜀∞𝑡2𝐿∞(𝜔)−1)𝑢, 𝑢
⟩

≤𝜇∞.

Together, this implies the claimed resolvent norm bound.

Note that unless 𝜇 is differentiable, the intersection between the (operator) domains of the pencils 𝐿𝜇, 𝐿∞ could
be trivial. Nevertheless they have the same form domain, and the following result holds.

Proposition 5.4. If 𝜎, 𝜀 and 𝜇 satisfy the limiting assumption (2.8) and 𝐿𝜇, 𝐿∞ are as in Definition 5.2, then
𝜎𝑒𝑘(𝐿𝜇)=𝜎𝑒𝑘(𝐿∞) ⊂ ℝ for 𝑘 = 1, 2, 3, 4, 5, and hence

𝜎𝑒𝑘(𝐿𝜇) ⧵ {0}=
((

− 1
𝜀∞𝜇∞

𝜎𝑒𝑘(curl curl0)1∕2
)

∪
( 1
𝜀∞𝜇∞

𝜎𝑒𝑘(curl curl0)1∕2
))

⧵ {0}.

Proof. Let 𝜔 ∈ ℂ and set 𝑧 ∶= 𝜀∞𝜔2. Then 𝜔 ∈ 𝜎𝑒𝑘(𝐿𝜇) if and only if 𝑧 ∈ 𝜎𝑒𝑘(𝐶𝜇) and 𝜔 ∈ 𝜎𝑒𝑘(𝐿∞) if and only if
𝑧∈ 𝜎𝑒𝑘(𝐶∞) where 𝐶𝜇 ∶= curl𝜇−1 curl0 and 𝐶∞ ∶= curl𝜇−1∞ curl0 are self-adjoint in 𝐻(div 0,Ω). Thus it suffices to
show that 𝜎𝑒𝑘(𝐶𝜇) = 𝜎𝑒𝑘(𝐶∞) for some 𝑘 ∈ {1, 2, 3, 4, 5}. Since the associated quadratic forms 𝔠𝜇 and 𝔠∞ have the
same domain, dom 𝔠𝜇=dom 𝔠∞=𝐻0(curl,Ω), the second resolvent identity takes the form

(𝐶𝜇−𝑧)−1− (𝐶∞−𝑧)−1=
(

curl0(𝐶𝜇−𝑧)−1
)∗(𝜇−1∞− 𝜇−1) curl0(𝐶∞−𝑧)−1 (5.3)

for 𝑧∈ℂ ⧵ℝ. In fact, for arbitrary 𝑢, 𝑣 ∈ 𝐿2(Ω)3 and 𝑧 ∈ ℂ ⧵ℝ, we can write
⟨(

(𝐶𝜇−𝑧)−1− (𝐶∞−𝑧)−1
)

𝑢, 𝑣
⟩

=
⟨

(𝐶𝜇−𝑧)−1𝑢, 𝑣
⟩

−
⟨

𝑢, (𝐶∞−𝑧)−1𝑣
⟩

=
⟨

(𝐶𝜇−𝑧)−1𝑢, (𝐶∞−𝑧)(𝐶∞−𝑧)−1𝑣
⟩

−
⟨

(𝐶𝜇−𝑧)(𝐶𝜇−𝑧)−1𝑢, (𝐶∞−𝑧)−1𝑣
⟩

=(𝔠∞ − 𝔠𝜇)
[

(𝐶𝜇−𝑧)−1𝑢, (𝐶∞−𝑧)−1𝑣
]

;

together with 𝔠𝜇 = ⟨𝜇−1curl0 ⋅, curl0 ⋅⟩ and analogously for 𝔠∞, the identity (5.3) follows. The first factor on the right-
hand side of (5.3) is bounded since dom𝐶𝜇⊂dom curl0. By assumption (2.8), the tensor-valued function (𝜇−1−𝜇−1∞ ) id
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satisfies condition (5.1) of Proposition 5.1 and thus the operator (𝜇−1−𝜇−1∞ ) id𝑃ker div is compact from 𝐻(curl,Ω) to
𝐻(div 0,Ω)⊂𝐿2(Ω)3. By Lemma 5.3 (ii), curl0(𝐶∞−𝑧)−1 =curl0 𝐿∞(𝜔)−1 is bounded from𝐻(div 0,Ω) to𝐻(curl,Ω).
Altogether, we see that

(𝜇−1∞− 𝜇−1) curl0(𝐶∞−𝑧)−1 = (𝜇−1∞ −𝜇−1) id𝑃ker div curl0(𝐶∞−𝑧)−1

is compact. Hence, by (5.3), the resolvent difference of 𝐶𝜇 and 𝐶∞ is compact and, by [25, Thm. IX.2.4], 𝜎𝑒𝑘(𝐶𝜇) =
𝜎𝑒𝑘(𝐶∞) follows for all 𝑘 = 1, 2, 3, 4, and for 𝑘 = 5 since 𝐶𝜇,𝐶∞ are self-adjoint.

Now we can characterise the essential spectrum of the Maxwell pencil 𝑉 (⋅) and show that it lies on the real axis
and on some bounded purely imaginary interval below 0.

Theorem 5.5. Suppose that 𝜎, 𝜀 and 𝜇 satisfy the limiting assumption (2.8). Let 𝑃∇ ∶= id−𝑃ker div be the orthogonal
projection from 𝐿2(Ω)3 = ∇𝐻̇1

0 (Ω) ⊕ 𝐻(div 0,Ω) onto ∇𝐻̇1
0 (Ω) and recall that (𝜔) ∶= −𝜔(𝜔𝜀 + i𝜎), 𝜔 ∈ ℂ, in

𝐿2(Ω)3. Then
𝜎𝑒𝑘() = 𝜎𝑒𝑘(𝐿∞) ∪ 𝜎𝑒𝑘(𝑃∇(⋅)|∇𝐻̇1

0 (Ω)
), 𝑘 = 1, 2, 3, 4,

with 𝜎𝑒𝑘(𝐿∞)⊂ℝ given in Proposition 5.4 and 𝜎𝑒𝑘(𝑃∇(⋅)|∇𝐻̇1
0 (Ω)

)⊂ i[−𝜎max
𝜀min

, 0].

Proof. Let 𝜔∈ℂ. By Proposition 5.1, 𝑀(𝜔) ∶= (𝜔(𝜔𝜀 + i𝜎) − 𝜔2𝜀∞)𝑃ker(div) in 𝐿2(Ω)3 is curl0-compact and hence
𝑇0-compact with 𝑇0 = 𝜇−1∕2 curl0. Since (𝜔) = 𝑇 ∗

0 𝑇0 + (𝜔) where (𝜔) = −𝜔(𝜔𝜀 + i𝜎), bounded sequences
whose (𝜔) graph norms are bounded have bounded 𝑇0 graph norms. Hence 𝑀(𝜔) is (𝜔)-compact which yields
𝜎𝑒((𝜔)) = 𝜎𝑒((𝜔) +𝑀(𝜔)).

Since ∇𝐻̇1
0 (Ω) ⊂ ker(curl0) = ker 𝑇0 and hence 𝑇0𝑃∇ = 𝑃∇𝑇 ∗

0 = 0, ∇𝐻̇1
0 (Ω) is a reducing subspace for

𝑇 ∗
0 𝑇0.Therefore the operator

 (𝜔)∶=(𝜔)+𝑀(𝜔)=𝑇 ∗
0 𝑇0−𝜔(𝜔𝜀+i𝜎)(𝑃∇+𝑃ker div)+(𝜔(𝜔𝜀+i𝜎)−𝜔

2𝜀∞)𝑃ker(div)
=𝑇 ∗

0 𝑇0−𝜔(𝜔𝜀+i𝜎)𝑃∇ − 𝜔2𝜀∞𝑃ker(div) (5.4)

which is a bounded perturbation of 𝑇 ∗
0 𝑇0 admits an operator matrix representation with respect to the decomposition

𝐿2(Ω)3=∇𝐻̇1
0 (Ω)⊕𝐻(div 0,Ω) given by

 (𝜔)=

(

𝑃∇ (𝜔)|∇𝐻̇1
0 (Ω)

𝑃∇ (𝜔)|𝐻(div 0,Ω)

𝑃ker div (𝜔)|∇𝐻̇1
0 (Ω)

𝑃ker div (𝜔)|𝐻(div 0,Ω)

)

=

(

𝑃∇(−𝜔(𝜔𝜀+i𝜎))|∇𝐻̇1
0 (Ω)

0
𝑃ker div(−𝜔(𝜔𝜀+i𝜎))|∇𝐻̇1

0 (Ω)
𝑃ker div(𝑇 ∗

0 𝑇0−𝜔
2𝜀∞)|𝐻(div 0,Ω)

)

=

(

𝑃∇(𝜔)|∇𝐻̇1
0 (Ω)

0
𝑃ker div(𝜔)|∇𝐻̇1

0 (Ω)
𝐿𝜇(𝜔)

)

(5.5)

with domain dom( (𝜔)) = ∇𝐻̇1
0 (Ω) ⊕ dom(𝐿𝜇(𝜔)). Apart from 𝐿𝜇(𝜔), the other two matrix entries in  (𝜔)

are bounded and everywhere defined, and 𝜎𝑒2(𝐿𝜇(𝜔)) = 𝜎∗𝑒2(𝐿𝜇(𝜔)). Thus Theorem 8.1 in Section 8 below and
Proposition 5.4 yield that

𝜎𝑒2((𝜔))=𝜎𝑒2(𝐿𝜇(𝜔)) ∪ 𝜎𝑒2(𝑃∇(𝜔)|∇𝐻̇1
0 (Ω)

)=𝜎𝑒2(𝐿∞(𝜔)) ∪ 𝜎𝑒2(𝑃∇(𝜔)|∇𝐻̇1
0 (Ω)

)

and hence, since 𝜔 ∈ ℂ was arbitrary,

𝜎𝑒2() = 𝜎𝑒2( +𝑀) = 𝜎𝑒2( ) = 𝜎𝑒2(𝐿∞) ∪ 𝜎𝑒2(𝑃∇(⋅)|∇𝐻̇1
0 (Ω)

).

Finally, the inclusion 𝜎𝑒𝑘(𝑃∇(⋅)|∇𝐻̇1
0 (Ω)

) ⊂ i[−𝜎max
𝜀min

, 0] follows since the spectrum of 𝑃∇(⋅)|∇𝐻̇1
0 (Ω)

is contained
in the closure of its numerical range, and hence in the closure of the numerical range of (⋅), which is a subset of
i[−𝜎max

𝜀min
, 0].
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Remark 5.6. Whenever the coefficients 𝜀 and 𝜎 are constant in a non-empty open set , the corresponding value
𝜔 ∶= −𝑖𝜎𝜀 is an eigenvalue of 𝑃∇(⋅)|∇𝐻̇1

0 (Ω)
(and hence of ) of infinite multiplicity, since (𝜔𝜀 + 𝑖𝜎)∇𝜙 ≡ 0 for

every smooth 𝜙 with support in .

Remark 5.7. Theorem 5.5 generalises [4, Thm. 6] since we do not suppose [4, Ass. 14] on Ω, which requires the
subspaces 𝐾𝑁 (Ω) of 𝐻(div 0,Ω) and 𝐾𝑇 (Ω) of 𝐻0(div 0,Ω) to be finite dimensional. If the latter holds, see [4, Prop.
15] for a list of sufficient conditions, then both Theorem 5.5 and [4, Thm. 6] apply and we obtain the interesting equality

𝜎𝑒𝑘
(

𝑃∇(⋅)|∇𝐻̇1
0 (Ω)

)

= 𝜎𝑒𝑘(div((⋅)∇)) 𝑘 = 1, 2, 3, 4, (5.6)

where 𝑃∇(𝜔)|∇𝐻̇1
0 (Ω)

is a bounded operator in 𝐿2(Ω;ℂ3), while div((𝜔)∇) is defined as a bounded operator from
𝐻̇1

0 (Ω) to 𝐻̇−1(Ω) in [4]. In fact, (5.6) follows from the identity

𝜎𝑒𝑘(𝐿∞) ∪ 𝜎𝑒𝑘
(

𝑃∇(⋅)|∇𝐻̇1
0 (Ω)

)

= 𝜎𝑒𝑘() = 𝜎𝑒𝑘
(

𝑉 0
(⋅)

)

∪ 𝜎𝑒𝑘(div((⋅)∇))

where 𝑉 0
(⋅) is the Maxwell pencil i𝑉 (⋅) with constant coefficients 𝜀∞, 𝜇∞ and 𝜎 ≡ 0 defined in [4, Thm. 6], by observing

that 𝜎𝑒𝑘
(

𝑉 0
(⋅)

)

= {0} ∪ 𝜎𝑒𝑘(𝐿∞) ⊂ℝ, 𝑘 = 1, 2, 3, 4, and that the sets in (5.6) lie on iℝ and both contain {0}.
Note that, in concrete examples, identity (5.6) is useful to explicitly determine the purely imaginary part of the

essential spectrum of the Maxwell pencil. In fact,

𝜎𝑒𝑘(div((⋅)∇)) = {𝜔 ∈ ℂ ∶ 0 ∈ 𝜎𝑒𝑘(div((𝜔𝜀 + i𝜎)∇))} ∪ {0}
= {i𝜈 ∈ iℝ ∶ 0 ∈ 𝜎𝑒𝑘(div((𝜈𝜀 + 𝜎)∇))} ∪ {0}.

Fredholm properties of operators div(𝑎∇) with non-definite coefficients 𝑎 also arise when studying Maxwell equations
in dielectric media with sign-changing permittivity and/or magnetic permeability, see e.g. [32, 33, 34] or [35, 36] for
relations to spectra of Neumann-Poincaré operators.

6. Abstract results for polynomial pencils
Before proceeding with the analysis of the spectral pollution for the domain truncation method applied to  we

need some abstract results providing an enclosure for the set of spectral pollution of sequences of polynomial pencils.
Let 𝐻0 be a Hilbert space, 𝐻,𝐻𝑛 ⊂ 𝐻0, 𝑛 ∈ ℕ, be closed subspaces. Let 𝑃 ∶ 𝐻0 → 𝐻 , 𝑃𝑛 ∶ 𝐻0 → 𝐻𝑛 be the

corresponding orthogonal projections and assume that 𝑃𝑛 → 𝑃 strongly in 𝐻0, which we write as 𝑃𝑛
𝑠
→ 𝑃 . For fixed

𝑀 ∈ ℕ, let 𝐴𝑗 , 𝑗 = 0,… ,𝑀 , be densely defined operators in 𝐻 and, for 𝑛 ∈ ℕ, let 𝐴𝑗,𝑛, 𝑗 = 0,… ,𝑀 , be densely
defined operators in 𝐻𝑛. We assume that 𝐴𝑗 , 𝑗 ≠ 0, are bounded and 𝐴𝑗,𝑛, 𝑗 ≠ 0, are uniformly bounded in 𝑛 ∈ ℕ; in
particular, only 𝐴0 and 𝐴0,𝑛 may be unbounded.

In addition, we assume that there exists a ray ei𝛾 (−∞, 𝑐) ⊂
⋂

𝑛∈ℕ 𝜚(𝐴0,𝑛) ∩ 𝜚(𝐴0) with 𝑐 ∈ ℝ, 𝛾 ∈ (−𝜋, 𝜋] such
that

lim
𝑡∈ei𝛾ℝ,e−i𝛾 𝑡→−∞

‖(𝐴0 − 𝑡)−1‖ → 0, lim
𝑡∈ei𝛾ℝ,e−i𝛾 𝑡→−∞

sup
𝑛∈ℕ

‖(𝐴0,𝑛 − 𝑡)−1‖ → 0. (6.1)

This assumption is satisfied e.g. if 𝐴0 and 𝐴0,𝑛, 𝑛 ∈ ℕ, are 𝑚-accretive (then with 𝛾 = 0) or self-adjoint (then with
𝛾 = 𝜋

2 or −𝜋
2 ). In the sequel we assume, without loss of generality, that 𝛾 = 0.

Consider the pencils of operators acting in 𝐻 and 𝐻𝑛, respectively, given by

𝑇 (𝜆) ∶=
𝑀
∑

𝑗=0
𝜆𝑗𝐴𝑗 , dom 𝑇 (𝜆) ∶= dom(𝐴0) ⊂ 𝐻,

𝑇𝑛(𝜆) ∶=
𝑀
∑

𝑗=0
𝜆𝑗𝐴𝑗,𝑛, dom 𝑇𝑛(𝜆) ∶= dom(𝐴0,𝑛) ⊂ 𝐻𝑛, 𝑛 ∈ ℕ.
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The boundedness of all higher order coefficient operators implies that all derivatives 𝑇 (𝑘)(𝜆), 𝑇 (𝑘)
𝑛 (𝜆), 𝑛 ∈ ℕ,

𝑘 = 1, 2,… ,𝑀 , are bounded operators and that

𝑇 ∗(𝜆) ∶= 𝑇 (𝜆)∗=
𝑀
∑

𝑗=0
𝜆𝑗𝐴∗

𝑗 , dom 𝑇 ∗(𝜆) =dom𝐴∗
0,

𝑇 ∗
𝑛 (𝜆) ∶= 𝑇𝑛(𝜆)∗=

𝑀
∑

𝑗=0
𝜆𝑗𝐴∗

𝑗,𝑛, dom 𝑇 ∗
𝑛 (𝜆) =dom𝐴∗

0,𝑛, 𝑛∈ℕ.

We define the region of boundedness of the sequence (𝑇𝑛)𝑛∈ℕ by

Δ𝑏((𝑇𝑛)𝑛∈ℕ)∶=
{

𝜆∈ℂ ∶ ∃ 𝑛0∈ℕ with 𝜆∈𝜚(𝑇𝑛), 𝑛≥𝑛0, sup
𝑛≥𝑛0

‖𝑇𝑛(𝜆)−1‖<∞
}

;

note that, for the case of monic linear operator pencils 𝑇𝑛(𝜆) ∶= 𝜆 − 𝐴0,𝑛, 𝜆 ∈ ℂ, with unbounded 𝐴0,𝑛, this notion
coincides with the region of boundedness of the operator sequence (𝐴0,𝑛)𝑛∈ℕ, see [37, Def. 2.1 (iii)].

Lemma 6.1. i) Let 𝜆 ∈ Δ𝑏
(

(𝑇𝑛)𝑛∈ℕ
)

with 𝜆 ∈ 𝜚(𝑇𝑛) for 𝑛 ≥ 𝑛𝜆. Then there exist 𝑟𝜆, 𝑚𝜆 > 0 such that
𝐵𝑟𝜆 (𝜆) ⊂ Δ𝑏

(

(𝑇𝑛)𝑛∈ℕ
)

with

∀𝜇 ∈ 𝐵𝑟𝜆 (𝜆) ∶ 𝜇 ∈ 𝜚(𝑇𝑛), ‖𝑇𝑛(𝜇)−1‖ ≤ 𝑚𝜆, 𝑛 ≥ 𝑛𝜆.

ii) Let 𝐾⊂Δ𝑏
(

(𝑇𝑛)𝑛∈ℕ
)

be a compact subset. Then there exist 𝑛𝐾 ∈ℕ, 𝑚𝐾 >0 with

∀𝜇 ∈ 𝐾 ∶ 𝜇 ∈ 𝜚(𝑇𝑛), ‖𝑇𝑛(𝜇)−1‖ ≤ 𝑚𝐾 , 𝑛 ≥ 𝑛𝐾 .

Proof. i) Let 𝜆 satisfy the assumptions and let 𝑛 ≥ 𝑛𝜆. By a Neumann series argument, the operator

𝑇𝑛(𝜇) =

(

𝐼 +
𝑀
∑

𝑘=1

(𝜇 − 𝜆)𝑘

𝑘!
𝑇 (𝑘)
𝑛 (𝜆)𝑇𝑛(𝜆)−1

)

𝑇𝑛(𝜆), 𝑛 ≥ 𝑛0,

is boundedly invertible if 𝜇 ∈ 𝐵𝑟𝜆 (𝜆) and 𝑟𝜆 > 0 is so small that

𝑐𝜆 ∶=
𝑀
∑

𝑘=1

𝑟𝑘𝜆
𝑘!

sup
𝑛≥𝑛𝜆

‖𝑇 (𝑘)
𝑛 (𝜆)𝑇𝑛(𝜆)−1‖ < 1.

Note that, for every 𝑘=1,… ,𝑀 , the operators 𝑇 (𝑘)
𝑛 (𝜆) =

∑𝑀
𝑗=1

𝑗!
(𝑗−𝑘)!𝜆

𝑗−𝑘𝐴𝑗,𝑛, are bounded uniformly in 𝑛 ∈ ℕ. We
obtain that 𝐵𝑟𝜆 (𝜆)⊂𝜚(𝑇𝑛) for every 𝑛≥𝑛𝜆, with

‖𝑇𝑛(𝜇)−1‖ ≤
sup𝑛≥𝑛𝜆 ‖𝑇𝑛(𝜆)

−1
‖

1 − 𝑐𝜆
, 𝜇 ∈ 𝐵𝑟𝜆 (𝜆).

ii) By i), the compact set𝐾 can be covered by open disks (around each 𝜆∈𝐾) on which 𝜇 ↦ sup𝑛≥𝑛𝜆 ‖𝑇𝑛(𝜇)
−1
‖ is

uniformly bounded. Since 𝐾 is compact, there exists a finite covering of such disks. Now the claim is easy to see.

Proposition 6.2. No spectral pollution occurs in Δ𝑏
(

(𝑇𝑛)𝑛∈ℕ
)

.

Proof. Let 𝜆∈Δ𝑏
(

(𝑇𝑛)𝑛∈ℕ
)

. Lemma 6.1 i) implies that 𝐵𝑟𝜆 (𝜆)⊂𝜚(𝑇𝑛) for 𝑛≥𝑛𝜆, and so, in the limit 𝑛→∞, points in
𝜎(𝑇𝑛) cannot accumulate at 𝜆.

Lemma 6.3. Assume that there exists 𝜆0 ∈
⋂

𝑛∈ℕ 𝜚(𝑇𝑛) ∩ 𝜚(𝑇 ) with

𝑇𝑛(𝜆0)−1𝑃𝑛
𝑠
→ 𝑇 (𝜆0)−1𝑃 , 𝑛→ ∞, (6.2)
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and that 𝐴𝑗,𝑛𝑃𝑛
𝑠
→ 𝐴𝑗𝑃 for 𝑗 = 1… ,𝑀 . Then for every 𝜆 ∈ Δ𝑏

(

(𝑇𝑛)𝑛∈ℕ
)

∩ 𝜚(𝑇 ),

𝑇𝑛(𝜆)−1𝑃𝑛
𝑠
→ 𝑇 (𝜆)−1𝑃 , 𝑛→ ∞.

Proof. Let 𝜆 ∈ Δ𝑏
(

(𝑇𝑛)𝑛∈ℕ
)

∩ 𝜚(𝑇 ). Define the bounded operators

𝑆(𝜆) ∶= 𝑇 (𝜆) − 𝑇 (𝜆0) =
𝑀
∑

𝑗=1
(𝜆𝑗 − 𝜆𝑗0)𝐴𝑗 ,

𝑆𝑛(𝜆) ∶= 𝑇𝑛(𝜆) − 𝑇𝑛(𝜆0) =
𝑀
∑

𝑗=1
(𝜆𝑗 − 𝜆𝑗0)𝐴𝑗,𝑛, 𝑛 ∈ ℕ.

Assumption (6.1) together with the boundedness of the operators 𝐴𝑗,𝑛, 𝑛 ∈ ℕ, 𝑗 = 1,… ,𝑀 , imply that, by a
Neumann series argument, there exists 𝑡0 ∈ ℝ such that (−∞, 𝑡0) is contained in the (operator) region of boundedness
Δ𝑏

(

(𝑇𝑛(𝜆0)
)

𝑛∈ℕ), see [37, Def. 2.1 (iii)], and in 𝜚(𝑇 (𝜆0)), with

lim
𝑡∈ℝ,𝑡→−∞

‖(𝑇 (𝜆0) − 𝑡)−1‖ = 0, lim
𝑡∈ℝ,𝑡→−∞

sup
𝑛∈ℕ

‖(𝑇𝑛(𝜆0) − 𝑡)−1‖ = 0. (6.3)

Then (6.2) and [37, Prop. 2.16 i)] imply that, for 𝑡 ∈ (−∞, 𝑡0),

(𝑇𝑛(𝜆0) − 𝑡)−1𝑃𝑛
𝑠
→ (𝑇 (𝜆0) − 𝑡)−1𝑃 , 𝑛→ ∞.

By the assumptions, 𝑆𝑛(𝜆)𝑃𝑛
𝑠
→𝑆(𝜆)𝑃 as 𝑛→∞. This and (6.3) show that the perturbation result [37, Cor. 3.5], applies

to 𝑇 (𝜆)=𝑇 (𝜆0) + 𝑆(𝜆), 𝑇𝑛(𝜆)=𝑇𝑛(𝜆0) + 𝑆𝑛(𝜆), 𝑛 ∈ ℕ, and yields that, for all sufficiently negative 𝑡 ∈ (−∞, 𝑡0),

(𝑇𝑛(𝜆) − 𝑡)−1𝑃𝑛
𝑠
→ (𝑇 (𝜆) − 𝑡)−1𝑃 , 𝑛→ ∞.

By the choice of 𝜆 we have 0∈Δ𝑏
(

(𝑇𝑛(𝜆)
)

𝑛∈ℕ) ∩ 𝜚(𝑇 (𝜆)), and hence another application of [37, Prop. 2.16 i)] implies
the claim.

Proposition 6.4. Suppose that the assumptions of Lemma 6.3 are satisfied. Then, for each 𝜆 ∈ 𝜎𝑝(𝑇 ) such that for
some 𝜀 > 0 we have

𝐵𝜀(𝜆)∖{𝜆} ⊂ Δ𝑏
(

(𝑇𝑛)𝑛∈ℕ
)

∩ 𝜚(𝑇 ), (6.4)

there exists a sequence of elements 𝜆𝑛 ∈ 𝜎(𝑇𝑛), 𝑛 ∈ ℕ, with 𝜆𝑛 → 𝜆, 𝑛→ ∞.

Proof. Let 𝜆 ∈ 𝜎𝑝(𝑇 ) and 𝜀 > 0 satisfy (6.4). Assume the claim does not hold. Then there exists a 𝛿 ∈ (0, 𝜀) and an
infinite subset 𝐼 ⊂ ℕ with dist(𝜆, 𝜎(𝑇𝑛)) ≥ 2𝛿, 𝑛 ∈ 𝐼 . Define bounded operators 𝑄 and 𝑄𝑛, 𝑛 ∈ ℕ, by the contour
integrals

𝑄 ∶= 1
2𝜋i ∫

|𝑧|=𝛿
𝑇 (𝜆 + 𝑧)−1

𝑀−1
∑

𝑘=0

𝑧𝑘

(𝑘 + 1)!
𝑇 (𝑘+1)(𝜆) d𝑧,

𝑄𝑛 ∶=
1
2𝜋i ∫

|𝑧|=𝛿
𝑇𝑛(𝜆 + 𝑧)−1

𝑀−1
∑

𝑘=0

𝑧𝑘

(𝑘 + 1)!
𝑇 (𝑘+1)
𝑛 (𝜆) d𝑧, 𝑛 ∈ 𝐼 ;

recall that the sums on the right-hand side are bounded operators since all higher order coefficients of 𝑇 were assumed
to be bounded. Since 𝑧↦𝑇𝑛(𝜆 + 𝑧)−1 is holomorphic in 𝐵2𝛿(0), we have 𝑄𝑛 =0, 𝑛∈ 𝐼 . Since 𝜆∈𝜎𝑝(𝑇 ), there exists
𝑥 ∈ dom(𝑇 ) with ‖𝑥‖ = 1 and 𝑇 (𝜆)𝑥 = 0. Using this in the Taylor expansion of 𝑇 in 𝜆, we conclude that

𝑇 (𝜆 + 𝑧)𝑥 =
𝑀
∑

𝑘=1

𝑧𝑘

𝑘!
𝑇 (𝑘)(𝜆)𝑥, 𝑧 ∈ 𝐵2𝛿(0),
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and hence

1
𝑧
𝑥 = 𝑇 (𝜆 + 𝑧)−1

𝑀−1
∑

𝑘=0

𝑧𝑘

(𝑘 + 1)!
𝑇 (𝑘+1)(𝜆)𝑥, 𝑧 ∈ 𝐵2𝛿(0) ⧵ {0}.

Now Cauchy’s integral formula implies that

𝑄𝑥 =
(

1
2𝜋i ∫

|𝑧|=𝛿

1
𝑧
d𝑧
)

𝑥 = 𝑥 ≠ 0. (6.5)

For every 𝑛 ∈ 𝐼 , define the function 𝑓𝑛 ∶ {𝑧 ∈ ℂ ∶ |𝑧| = 𝛿} → [0,∞) by

𝑓𝑛(𝑧)∶=
‖

‖

‖

𝑇 (𝜆+𝑧)−1
𝑀−1
∑

𝑘=0

𝑧𝑘

(𝑘+1)!
𝑇 (𝑘+1)(𝜆)𝑃𝑥−𝑇𝑛(𝜆+𝑧)−1

𝑀−1
∑

𝑘=0

𝑧𝑘(𝜆)
(𝑘+1)!

𝑇 (𝑘+1)
𝑛 𝑃𝑛𝑥

‖

‖

‖

.

Then
‖𝑄𝑃𝑥 −𝑄𝑛𝑃𝑛𝑥‖ ≤ 1

2𝜋 ∫
|𝑧|=𝛿

𝑓𝑛(𝑧) d|𝑧|, 𝑛 ∈ 𝐼.

The assumptions together with Lemma 6.3 imply that 𝑓𝑛(𝑧) → 0, 𝑛 → ∞, for every 𝑧∈ℂ with |𝑧|= 𝛿. Note that 𝑓𝑛,
𝑛∈ℕ, are uniformly bounded by the compactness of the circle {𝑧∈ℂ ∶ |𝑧|= 𝛿} and by Lemma 6.1 ii). Lebesgue’s
dominated convergence theorem implies ‖𝑄𝑃𝑥 − 𝑄𝑛𝑃𝑛𝑥‖ → 0 as 𝑛 ∈ 𝐼 , 𝑛 → ∞. Since 𝑄𝑛 = 0, 𝑛 ∈ 𝐼 , it follows
that 𝑄𝑃𝑥 = 0. However 𝑃𝑥=𝑥 since 𝑥∈dom(𝑇 )⊂𝐻 and 𝑃 is a projection onto 𝐻 . Thus 𝑄𝑥=0, a contradiction to
𝑄𝑥=𝑥≠0, see (6.5).

Next we define the limiting approximate point spectrum by

𝜎app
(

(𝑇𝑛)𝑛∈ℕ
)

=
{

𝜆∈ℂ ∶ ∃ 𝐼 ⊂ℕ, 𝐼 infinite,∃𝑥𝑛∈ dom(𝑇𝑛), ‖𝑥𝑛‖=1, 𝑛∈𝐼,with ‖𝑇𝑛(𝜆)𝑥𝑛‖ → 0
}

and the limiting essential spectrum by

𝜎𝑒
(

(𝑇𝑛)𝑛∈ℕ
)

∶=
{

𝜆∈ℂ ∶ ∃ 𝐼 ⊂ℕ, 𝐼 infinite, ∃ 𝑥𝑛∈dom(𝑇𝑛), ‖𝑥𝑛‖=1, 𝑛∈𝐼,with 𝑥𝑛 ⇀ 0, ‖𝑇𝑛(𝜆)𝑥𝑛‖ → 0
}

.

It is easy to see that, as in the operator case, see [22, Lemma 2.14 ii)],

ℂ∖Δ𝑏
(

(𝑇𝑛)𝑛∈ℕ
)

= 𝜎app
(

(𝑇𝑛)𝑛∈ℕ
)

∪ 𝜎app
(

(𝑇 ∗
𝑛 )𝑛∈ℕ

)∗. (6.6)

Proposition 6.5. Suppose that the assumptions of Lemma 6.3 are satisfied. Then

𝜎app
(

(𝑇 ∗
𝑛 )𝑛∈ℕ

)∗ ⊂ 𝜎𝑒
(

(𝑇 ∗
𝑛 )𝑛∈ℕ

)∗ ∪ 𝜎𝑝(𝑇 ∗)∗.

Proof. Let 𝜆 ∈ 𝜎app
(

(𝑇 ∗
𝑛 )𝑛∈ℕ

)∗. By definition, there exist an infinite subset 𝐼 ⊂ ℕ and 𝑥𝑛 ∈ dom(𝑇 ∗
𝑛 ), 𝑛 ∈ 𝐼 , with

‖𝑥𝑛‖= 1 and ‖𝑇𝑛(𝜆)∗𝑥𝑛‖→ 0 as 𝑛→∞. The sequence (𝑥𝑛)𝑛∈ℕ ⊂ 𝐻0 is bounded and thus has a weakly convergent
subsequence (𝑥𝑛)𝑛∈𝐼2 with infinite 𝐼2 ⊂ 𝐼 ; denote its weak limit by 𝑥 ∈ 𝐻0. If 𝑥=0, then 𝜆∈𝜎𝑒

(

(𝑇 ∗
𝑛 )𝑛∈ℕ

)∗.
Now assume that 𝑥 ≠ 0. Define 𝑦𝑛 ∶= 𝑇𝑛(𝜆)∗𝑥𝑛, 𝑛 ∈ 𝐼2. Then 𝑦𝑛 → 0 as 𝑛 → ∞. Note that, if 𝑧 ∈

Δ𝑏((𝑇𝑛)𝑛∈ℕ) ∩ 𝜚(𝑇 ), then Lemma 6.3 implies 𝑇𝑛(𝑧)−1𝑃𝑛
𝑠
→ 𝑇 (𝑧)−1𝑃 , and

𝑇𝑛(𝑧)∗𝑥𝑛 =
𝑀
∑

𝑘=1

(𝑧 − 𝜆)𝑘

𝑘!
𝑇 (𝑘)
𝑛 (𝜆)∗𝑥𝑛 + 𝑦𝑛, 𝑛 ∈ 𝐼2.

Thus

𝑥𝑛 = 𝑇𝑛(𝑧)−∗
𝑀
∑

𝑘=1

(𝑧 − 𝜆)𝑘

𝑘!
𝑇 (𝑘)
𝑛 (𝜆)∗𝑥𝑛 + 𝑇𝑛(𝑧)−∗𝑦𝑛, 𝑛 ∈ 𝐼2. (6.7)
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Let 𝑤 ∈ 𝐻0 be arbitrary. The convergence assumptions, 𝑦𝑛 → 0 as 𝑛→∞ and 𝑇 (𝑘)(𝜆) = 𝑃𝑇 (𝑘)(𝜆) imply that

⟨𝑥𝑛, 𝑤⟩ =
𝑀
∑

𝑘=1

(𝑧 − 𝜆)𝑘

𝑘!
⟨

𝑥𝑛, 𝑇
(𝑘)
𝑛 (𝜆)𝑇𝑛(𝑧)−1𝑃𝑛𝑤

⟩

+
⟨

𝑦𝑛, 𝑇𝑛(𝑧)−1𝑃𝑛𝑤
⟩

→
𝑀
∑

𝑘=1

(𝑧 − 𝜆)𝑘

𝑘!
⟨

𝑥, 𝑃𝑇 (𝑘)(𝜆)𝑇 (𝑧)−1𝑃𝑤
⟩

=
⟨

𝑇 (𝑧)−∗
𝑀
∑

𝑘=1

(𝑧 − 𝜆)𝑘

𝑘!
𝑇 (𝑘)(𝜆)∗𝑃𝑥,𝑤

⟩

as 𝑛→∞. By the uniqueness of the weak limit, we obtain that

𝑥 = 𝑇 (𝑧)−∗
𝑀
∑

𝑘=1

(𝑧 − 𝜆)𝑘

𝑘!
𝑇 (𝑘)(𝜆)∗𝑃𝑥 ∈ dom(𝑇 (𝑧)∗) ⊂ 𝐻

hence 𝑃𝑥 = 𝑥 and

𝑇 (𝑧)∗𝑥 =
𝑀
∑

𝑘=1

(𝑧 − 𝜆)𝑘

𝑘!
𝑇 (𝑘)(𝜆)∗𝑥.

The uniqueness of the Taylor expansion of 𝑇 (⋅)∗ in 𝜆 implies that 0 = 𝑇 (𝜆)∗𝑥 = 𝑇 ∗(𝜆)𝑥. Since 𝑥 ≠ 0, we conclude
that 𝜆 ∈ 𝜎𝑝(𝑇 ∗)∗.

Now we prove the main result of this section.

Theorem 6.6. Assume that there exists 𝜆0 ∈
⋂

𝑛∈ℕ 𝜚(𝑇𝑛) ∩ 𝜚(𝑇 ) with

𝑇𝑛(𝜆0)−1𝑃𝑛
𝑠
→ 𝑇 (𝜆0)−1𝑃 , 𝑇𝑛(𝜆0)−∗𝑃𝑛

𝑠
→ 𝑇 (𝜆0)−∗𝑃 .

If also 𝐴𝑗,𝑛𝑃𝑛
𝑠
→ 𝐴𝑗𝑃 and 𝐴∗

𝑗,𝑛𝑃𝑛
𝑠
→ 𝐴∗

𝑗𝑃 for every 𝑗 = 1,… ,𝑀 , then spectral pollution is contained in

𝜎𝑒
(

(𝑇𝑛)𝑛∈ℕ
)

∪ 𝜎𝑒
(

(𝑇 ∗
𝑛 )𝑛∈ℕ

)∗,

and for every isolated 𝜆 ∈ 𝜎𝑝(𝑇 ) not belonging to 𝜎𝑒
(

(𝑇𝑛)𝑛∈ℕ
)

∪ 𝜎𝑒
(

(𝑇 ∗
𝑛 )𝑛∈ℕ

)∗ there exist 𝜆𝑛 ∈ 𝜎(𝑇𝑛), 𝑛 ∈ ℕ, with
𝜆𝑛 → 𝜆.

Proof. First note that Δ𝑏
(

(𝑇𝑛)𝑛∈ℕ
)

= Δ𝑏
(

(𝑇 ∗
𝑛 )𝑛∈ℕ

)∗, see (6.6). The latter and Proposition 6.5 imply that
(

ℂ∖Δ𝑏
(

(𝑇𝑛)𝑛∈ℕ
))

∩ 𝜚(𝑇 ) =
(

𝜎app
(

(𝑇𝑛)𝑛∈ℕ
)

∪ 𝜎app
(

(𝑇 ∗
𝑛 )𝑛∈ℕ

)∗) ∩ 𝜚(𝑇 )

⊂ 𝜎𝑒
(

(𝑇𝑛)𝑛∈ℕ
)

∪ 𝜎𝑒
(

(𝑇 ∗
𝑛 )𝑛∈ℕ

)∗;

note that 𝜆 ∈ 𝜎𝑝(𝑇 ∗)∗ implies that {0} ≠ ker 𝑇 (𝜆)∗ = ran 𝑇 (𝜆)⟂ and hence 𝜆 ∉ 𝜚(𝑇 ). Now the claims follow from
Propositions 6.2 and 6.4.

7. Limiting essential spectrum
In this section, along with the linear Maxwell pencil 𝑉 (⋅) in 𝐿2(Ω)3 ⊕ 𝐿2(Ω)3, see (1.3), the associated operator

matrix  in 𝐿2(Ω)3⊕𝐿2(Ω)3, see (3.2), and the quadratic operator pencil (⋅) in 𝐿2(Ω)3, see (4.1), we now consider
their analogues 𝑉𝑛(⋅) and 𝑛 in 𝐿2(Ω𝑛)3 ⊕ 𝐿2(Ω𝑛)3 and 𝑛(⋅) in 𝐿2(Ω𝑛)3, respectively. The objective of this section
is to determine the limiting essential spectrum 𝜎𝑒((𝑛)𝑛∈ℕ) and then to prove Theorem 2.4.

Note that all our results in Sections 3 on spectral enclosures and resolvent estimates for 𝑉 (⋅) and  as well as
in Section 4 on the relations between the spectral properties of 𝑉 (⋅) and (⋅) hold for both bounded and unbounded
domains, and thus cover, when applied on the domains Ω𝑛, 𝑛 ∈ ℕ, equally 𝑉𝑛(⋅), 𝑛 and 𝑛(⋅).

For convenience, we briefly recall that, in line with (3.1), (3.2) and (4.1),
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𝑉𝑛(𝜔) =
(

𝜀1∕2 0
0 𝜇1∕2

)

(𝑛 − 𝜔𝐼)
(

𝜀1∕2 0
0 𝜇1∕2

)

,

dom𝑉𝑛(𝜔) = 𝐻0(curl,Ω𝑛)⊕𝐻(curl,Ω𝑛),
(7.1)

in which

𝑛 ∶=

(

−i𝜀−
1
2 𝜎𝜀−

1
2 −i𝜀−

1
2 curl𝜇−1∕2

i𝜇−1∕2curl0𝜀
− 1

2 0

)

,

dom𝑛 ∶= 𝜀1∕2𝐻0(curl,Ω𝑛)⊕ 𝜇1∕2𝐻(curl,Ω𝑛),

(7.2)

and
𝑛(𝜔) ∶= curl𝜇−1curl0 − 𝜔(𝜔𝜀 + i𝜎),

dom(𝑛(𝜔)) ∶= {𝐸 ∈ 𝐻0(curl,Ω𝑛) ∶ 𝜇−1 curl𝐸 ∈ 𝐻(curl,Ω𝑛)}.
(7.3)

In the sequel, we define the orthogonal projection 𝑃𝑛 ∶ 𝐿2(Ω)3 → 𝐿2(Ω𝑛)3 by 𝑃𝑛𝑢 = 𝜒Ω𝑛𝑢 for 𝑢 ∈ 𝐿2(Ω)3. Note
that 𝐿2(Ω𝑛) is understood as a subspace of 𝐿2(Ω) by extending each function by zero.

Proposition 7.1. Let 𝜔=i𝑡 with 𝑡≥𝜀−1∕2min . Then 𝑛(𝜔)−1𝑃𝑛
𝑠
→(𝜔)−1 as 𝑛→∞.

Proof. In the sequel we use Lemma 4.1 applied to both (⋅) and to its truncated analogues 𝑛(⋅); the truncated
analogues of 𝑇0 =𝜇−1∕ curl0, dom 𝑇0 =𝐻0(curl,Ω), and of (𝜔) =−𝜔(𝜔𝜀 + i𝜎), 𝜔∈ℂ, in 𝐿2(Ω)3, are operators in
𝐿2(Ω𝑛)3 which we denote by 𝑇0,𝑛=𝜇−1∕2 curl0, dom 𝑇0,𝑛=𝐻0(curl,Ω𝑛), and 𝑛(𝜔)=−𝜔(𝜔𝜀 + i𝜎).

Because Ω=
⋃

𝑛∈ℕΩ𝑛 and 𝐶∞
𝑐 (Ω)3 is a core of (𝑇 ∗

0 𝑇0+𝐼)
1∕2, see Lemma 4.1, it follows that for every 𝑢 there exists

𝑁𝑢 ∈ ℕ such that supp 𝑢 ⊂ Ω𝑛 for all 𝑛≥𝑁𝑢. Then (𝑇 ∗
0 𝑇0+𝐼)

1∕2𝑢= (𝑇 ∗
0,𝑛𝑇0,𝑛+𝐼)

1∕2𝑃𝑛𝑢 for 𝑛≥𝑁𝑢. By Lemma 4.1
sup𝑛∈ℕ ‖(𝑇 ∗

0,𝑛𝑇0,𝑛+𝐼)
−1∕2

‖≤1<∞ and hence [37, Thm. 3.1] yields that

(𝑇 ∗
0,𝑛𝑇0,𝑛 + 𝐼)

−1∕2𝑃𝑛
𝑠
→ (𝑇 ∗

0 𝑇0 + 𝐼)
−1∕2, 𝑛→ ∞.

It is easy to see that (𝑛(𝜔)−𝐼)𝑃𝑛
𝑠
→ (𝜔)−𝐼 as 𝑛 → ∞ for all 𝜔∈ℂ. Since the product and sum of strongly

convergent operators are strongly convergent, we obtain that
(

𝐼 + (𝑇 ∗
0,𝑛𝑇0,𝑛 + 𝐼)

−1∕2(𝑛(𝜔) − 𝐼)(𝑇 ∗
0,𝑛𝑇0,𝑛 + 𝐼)

−1∕2
)

𝑃𝑛
𝑠
→ 𝐼 + (𝑇 ∗

0 𝑇0 + 𝐼)
−1∕2((𝜔) − 𝐼)(𝑇 ∗

0 𝑇0 + 𝐼)
−1∕2, 𝑛→ ∞.

(7.4)

Now let 𝜔 = i𝑡 with 𝑡 ≥ 𝜀−1∕2min . Then Lemma 4.1 implies that

‖

‖

‖

(

𝐼 + (𝑇 ∗
0 𝑇0 + 𝐼)

−1∕2((𝜔) − 𝐼)(𝑇 ∗
0 𝑇0 + 𝐼)

−1∕2)−1‖
‖

‖

≤ 1,

sup
𝑛∈ℕ

‖

‖

‖

‖

(

𝐼+(𝑇 ∗
0,𝑛𝑇0,𝑛+𝐼)

−1∕2(𝑛(𝜔)−𝐼)(𝑇 ∗
0,𝑛𝑇0,𝑛+𝐼)

−1∕2
)−1

‖

‖

‖

‖

≤ 1 <∞.
(7.5)

Hence, by [37, Lemma 3.2], the inverses in (7.4), converge strongly as well,
(

𝐼 + (𝑇 ∗
0,𝑛𝑇0,𝑛 + 𝐼)

−1∕2(𝑛(𝜔) − 𝐼)(𝑇 ∗
0,𝑛𝑇0,𝑛 + 𝐼)

−1∕2
)−1

𝑃𝑛
𝑠
→

(

𝐼 + (𝑇 ∗
0 𝑇0 + 𝐼)

−1∕2((𝜔) − 𝐼)(𝑇 ∗
0 𝑇0 + 𝐼)

−1∕2)−1 , 𝑛→ ∞.

Altogether, we arrive at

𝑛(𝜔)−1𝑃𝑛=(𝑇 ∗
0,𝑛𝑇0,𝑛+𝐼)

− 1
2

(

𝐼+(𝑇 ∗
0,𝑛𝑇0,𝑛+𝐼)

− 1
2(𝑛(𝜔)−𝐼)(𝑇 ∗

0,𝑛𝑇0,𝑛+𝐼)
− 1

2

)−1
(𝑇 ∗

0,𝑛𝑇0,𝑛+𝐼)
− 1

2𝑃𝑛
𝑠
→ (𝑇 ∗

0 𝑇0+𝐼)
− 1

2

(

𝐼+(𝑇 ∗
0 𝑇0+𝐼)

− 1
2 ((𝜔)−𝐼)(𝑇 ∗

0 𝑇0+𝐼)
− 1

2

)−1
(𝑇 ∗

0 𝑇0+𝐼)
− 1

2 = (𝜔)−1.
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Applying Theorem 6.6 to the quadratic pencils 𝑛 and using that 𝑛 is 𝐽 -self-adjoint with respect to conjugation
for all 𝑛 ∈ ℕ so that 𝜎𝑒((∗

𝑛)𝑛∈ℕ)
∗ = 𝜎𝑒((𝑛)𝑛∈ℕ), we immediately obtain

𝜎poll((𝑛)𝑛∈ℕ) ⊂ 𝜎𝑒((𝑛)𝑛∈ℕ) ∪ 𝜎𝑒((∗
𝑛)𝑛∈ℕ)

∗ = 𝜎𝑒((𝑛)𝑛∈ℕ). (7.6)

Proposition 7.2. Suppose that 𝜎, 𝜀 and 𝜇 satisfy the limiting assumption (2.8). Denote by 𝑛(𝜔) the triangular operator
matrices given by (5.5) with Ω replaced by Ω𝑛, i.e. acting in 𝐿2(Ω𝑛)3 =∇𝐻̇1

0 (Ω𝑛)⊕𝐻(div 0,Ω𝑛). Then the limiting
essential spectra of (𝑛)𝑛∈ℕ and (𝑛)𝑛∈ℕ are equal,

𝜎𝑒((𝑛)𝑛∈ℕ) = 𝜎𝑒((𝑛)𝑛∈ℕ).

Proof. The proof is closely modelled on the proofs of Theorem 5.5 and Proposition 5.1. Let 𝜔 ∈ ℂ be fixed. Let
𝑀𝑛(𝜔)∶=(𝜔(𝜔𝜀+i𝜎)−𝜔2)𝑃ker(div,Ω𝑛) in 𝐿2(Ω𝑛)3. Then 𝑛(𝜔) is the operator matrix representation of 𝑛(𝜔)+𝑀𝑛(𝜔)
in 𝐿2(Ω𝑛)3=∇𝐻̇1

0 (Ω𝑛)⊕𝐻(div 0,Ω𝑛). First note that, for any 𝑢𝑛∈dom(𝑛), ‖𝑢𝑛‖=1, the sequence (‖𝑛(𝜔)𝑢𝑛‖)𝑛∈ℕ
is bounded if and only if the sequence (‖(𝑛(𝜔)+𝑀𝑛(𝜔))𝑢𝑛‖)𝑛∈ℕ is bounded.

Now we argue that it suffices to show the following claim: if any of the above two sequences is bounded, then for
any infinite subset 𝐼 ⊂ ℕ the sequence (𝑀𝑛(𝜔)𝑢𝑛)𝑛∈𝐼 ⊂ 𝐿2(Ω)3 has a convergent subsequence. To see that this claim
proves the theorem, assume that 𝑢𝑛 ⇀ 0 and 𝑛(𝜔)𝑢𝑛→0 as 𝑛→∞, i.e. 𝜔∈𝜎𝑒((𝑛)𝑛∈ℕ). Then, by the claim together
with 𝑢𝑛 ⇀ 0, and the uniqueness of the weak limit, we get 𝑀𝑛(𝜔)𝑢𝑛 → 0 as 𝑛→∞, whence 𝜔∈ 𝜎𝑒((𝑛+𝑀𝑛)𝑛∈ℕ).
The proof is analogous if we start with 𝜔 ∈ 𝜎𝑒((𝑛+𝑀𝑛)𝑛∈ℕ).

To prove the claim, let (‖𝑛(𝜔)𝑢𝑛‖)𝑛∈ℕ be bounded. Then (‖𝑢𝑛‖𝐻(curl,Ω𝑛))𝑛∈ℕ is bounded as well, and thus the
property that, for any infinite subset 𝐼 ⊂ ℕ, (𝑀𝑛(𝜔)𝑢𝑛)𝑛∈𝐼 ⊂ 𝐿2(Ω)3 has a convergent subsequence is equivalent to

𝑀𝑛(𝜔)𝑃ker div ∶(𝐻(curl,Ω𝑛), ‖ ⋅ ‖𝐻(curl,Ω𝑛))→ (𝐿2(Ω𝑛)3, ‖ ⋅ ‖𝐿2(Ω𝑛)3 ), 𝑛∈ℕ,

being a discretely compact sequence, see [38, Def. 3.1.(k)] or [37, Def. 2.5]. As in the proof of Proposition 5.1,
for any 𝛿 > 0 we can write 𝑀𝑛(𝜔) = 𝑀𝑐,𝑛(𝜔) + 𝑀𝛿,𝑛(𝜔) where 𝑀𝛿,𝑛(𝜔) is a bounded multiplication operator
with ‖𝑀𝛿,𝑛(𝜔)‖ < 𝛿 vanishing uniformly in 𝑛 as 𝛿 → 0 and 𝑀𝑐,𝑛(𝜔) has compact support in some domain
Ω𝑅,𝑛 ∶= Ω𝑛∩𝐵(0, 𝑅) ⊂ Ω∩𝐵(0, 𝑅) = Ω𝑅 for sufficiently large𝑅 > 0. Since the uniform limit of a discretely compact
sequence is discretely compact, see [37, Prop. 2.9], the sequence (𝑀𝑛(𝜔))𝑛∈ℕ is discretely compact if each sequence
(𝑀𝑐,𝑛(𝜔))𝑛∈ℕ, 𝛿 > 0, is discretely compact. To show the latter, let 𝐼 ⊂ ℕ be an infinite subset. Let 𝜒𝑅 be the same
cut-off function as in the proof of Proposition 5.1 and let 𝜄 be the compact embedding of 𝐻0(curl,Ω𝑅) ∩𝐻(div,Ω𝑅)
in 𝐿2(Ω𝑅)3, see [31]. Then, for all sufficiently large 𝑛 ∈ 𝐼 , supp𝑀𝑐,𝑛(𝜔) ⊂ Ω𝑅,𝑛 ⊂ Ω𝑛 and

𝑀𝑐,𝑛(𝜔)𝑃ker div𝑢𝑛 =𝑀𝑐,𝑛(𝜔)𝜄(𝜒𝑅𝑃ker div𝑢𝑛)|Ω𝑅,𝑛 .

As in the proof of Proposition 5.1, we now deduce that (𝑀𝑐,𝑛(𝜔)𝑢𝑛)𝑛∈𝐼 ⊂ 𝐿2(Ω)3 has a convergent subsequence.

Proposition 7.3. Suppose that 𝜎, 𝜀 and 𝜇 satisfy the limiting assumption (2.8). Let 𝐿𝜇,𝑛 and 𝐿∞,𝑛 be defined in the
same way as 𝐿𝜇 and 𝐿∞, see Definition 5.2 with Ω replaced by Ω𝑛. Then

𝜎𝑒((𝐿𝜇,𝑛)𝑛∈ℕ) = 𝜎𝑒((𝐿∞,𝑛)𝑛∈ℕ).

Proof. Recall that 𝐿𝜇,𝑛(𝜔) = 𝐶𝜇,𝑛 − 𝜀∞𝜔2 id, 𝐿∞,𝑛(𝜔) = 𝐶∞,𝑛 − 𝜀∞𝜔2 id, 𝑛 ∈ ℕ, 𝜔 ∈ ℂ, are closed operators
acting in the Hilbert space 𝐻(div 0,Ω𝑛) ⊊ 𝐿2(Ω𝑛)3, endowed with the 𝐿2(Ω𝑛)3-norm, and 𝐶𝜇,𝑛 = curl𝜇−1 curl0,
𝐶∞,𝑛 = curl𝜇−1∞ curl0 are self-adjoint therein.

The proof is modelled on that of Proposition 5.4. Here it suffices to prove 𝜎𝑒((𝐿𝜇,𝑛(𝜔))𝑛∈ℕ) = 𝜎𝑒((𝐿∞,𝑛(𝜔))𝑛∈ℕ
for only one 𝜔 ∈ ℂ, which we choose as 𝜔 = i𝑡 with 𝑡 ≥ 𝜀−1∕2min , or equivalently 𝜎𝑒((𝐶𝜇,𝑛)𝑛∈ℕ) = 𝜎𝑒((𝐶∞,𝑛)𝑛∈ℕ). By
[22, Thm. 2.5] the limiting essential spectrum has the spectral mapping property for the resolvent. Due to [22, Thm.
2.12 (ii)] it is then enough to show that, for 𝑧 = 𝜀∞𝜔2 ≤ −1,

𝐾𝑛(𝑧) ∶= (𝐿𝜇,𝑛(𝜔))−1 − (𝐿∞,𝑛(𝜔))−1 = (𝐶𝜇,𝑛 − 𝑧)−1 − (𝐶∞,𝑛 − 𝑧)−1
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is such that (𝐾𝑛(𝑧))𝑛∈ℕ is discretely compact and (𝐾𝑛(𝑧)∗𝑃𝑛)𝑛∈ℕ is strongly convergent. The strong convergence follows
from Proposition 7.1 which yields that

𝐾𝑛(𝑧)∗𝑃𝑛 = (𝜇,𝑛(𝜔))−1𝑃𝑛 − (∞,𝑛(𝜔))−1𝑃𝑛
𝑠
→ (𝜇(𝜔))−1 − (∞(𝜔))−1.

Applying (5.3) in the proof of Proposition 5.4 on Ω𝑛, we deduce that

𝐾𝑛(𝑧) =
(

curl0(𝐶𝜇,𝑛−𝑧)−1
)∗(𝜇−1∞− 𝜇−1) curl0(𝐶∞,𝑛−𝑧)−1. (7.7)

By Lemma 5.3 (ii) on Ω𝑛, the operators curl0(𝐶∞,𝑛−𝑧)−1 = curl0(∞,𝑛(𝜔))−1 are bounded from 𝐻(div 0,Ω𝑛) to
𝐻(curl,Ω𝑛) with uniformly bounded operator norms,

sup
𝑛∈ℕ

‖ curl(∞,𝑛(𝜔))−1‖(𝐻(div 0,Ω𝑛),𝐻(curl,Ω𝑛)) ≤
(

𝜇∞
𝜀∞|𝜔|2

+ 𝜇2∞

)1∕2
<∞.

By Lemma 5.3 (i) on Ω𝑛, the operators (curl0(𝐶𝜇,𝑛 − 𝑧)−1
)∗ = (𝜇,𝑛(𝜔))−1 curl are bounded from 𝐿2(Ω𝑛)3 to

𝐻(div 0,Ω𝑛). Moreover, they are strongly convergent, (𝜇,𝑛(𝜔))−1 curl𝑃𝑛
𝑠
→ (𝜇(𝜔))−1 curl as 𝑛 → ∞, since for

every 𝑢 ∈ 𝐻(curl,Ω) we have 𝑃𝑛𝑢 ∈ 𝐻(curl,Ω𝑛) with curl𝑃𝑛𝑢 = 𝑃𝑛 curl 𝑢 as curl is a local operator, and since
(𝜇,𝑛(𝜔))−1𝑃𝑛

𝑠
→ (𝜇(𝜔))−1 as 𝑛→∞, which follows by analogy with the proof of Proposition 7.1. Analogously to the

proof of Proposition 7.2 for 𝑀𝑛(𝜔), one can show that

(𝜇−1−id)𝑃ker(div,Ω𝑛) ∶ (𝐻(curl,Ω𝑛), ‖⋅‖𝐻(curl,Ω𝑛))→ (𝐿2(Ω𝑛)3, ‖⋅‖𝐿2(Ω𝑛)3 ), 𝑛∈ℕ,

form a discretely compact sequence of operators. Now (7.7) and [37, Lemma 2.8 i), ii)] imply that (𝐾𝑛(𝑧))𝑛∈ℕ is a
discretely compact sequence.

Lemma 7.4. For every 𝑛 ∈ ℕ, the closure of V𝑛 = 𝐶∞
𝑐 (Ω𝑛)3 ∩𝐻(div 0,Ω𝑛), with respect to the 𝐻(curl,Ω𝑛)-norm

equals 𝑛 = 𝐻0(curl,Ω𝑛) ∩𝐻(div 0,Ω𝑛).

Proof. The subspace 𝑛 of 𝐻0(curl,Ω𝑛) equipped with the norm ‖ ⋅ ‖𝐻(curl,Ω𝑛) is closed since 𝐻0(curl,Ω𝑛) ∩
𝐻(div 0,Ω𝑛) with its norm ‖ ⋅ ‖𝐻(curl,Ω𝑛) + ‖ ⋅ ‖𝐻(div,Ω𝑛) is closed and the norms ‖𝑢‖𝐻(curl,Ω𝑛) + ‖𝑢‖𝐻(div,Ω𝑛) and
‖𝑢‖𝐻(curl,Ω𝑛) are equivalent for 𝑢 ∈ 𝐻0(curl,Ω𝑛) ∩𝐻(div 0,Ω𝑛). Consequently, 𝑛 is a Hilbert space. Since V𝑛 ⊂ 𝑛,
the statement is equivalent to proving that 𝑛 ∩ V ⟂

𝑛 = {0} where the orthogonal complement is taken with respect to
the inner product ⟨⋅, ⋅⟩ + ⟨curl ⋅, curl ⋅⟩. Let ℎ ∈ 𝑛 ∩ V ⟂

𝑛 . Then

⟨ℎ, 𝑣⟩ + ⟨curlℎ, curl 𝑣⟩ = 0, 𝑣 ∈ V𝑛. (7.8)

First we claim that every 𝜑∈𝐶∞
𝑐 (Ω𝑛)3 can be represented as 𝜑=∇𝜉+𝑣 with 𝜉∈𝐶∞

𝑐 (Ω𝑛), 𝑣∈V𝑛. Indeed, the Dirichlet
problem

−Δ𝜉 = −div𝜑 in Ω𝑛, 𝜉 = 0 on 𝜕Ω𝑛
has a unique solution 𝜉 ∈ 𝐶∞

𝑐 (Ω𝑛) and we can set 𝑣 = 𝜑 − ∇𝜉 ∈ V𝑛. Using 𝜑 = ∇𝜉 + 𝑣, curl ∇𝜉 = 0,
⟨ℎ,∇𝜉⟩= −⟨divℎ, 𝜉⟩ = 0 and (7.8), we conclude

⟨ℎ, 𝜑⟩ + ⟨curlℎ, curl𝜑⟩ = ⟨ℎ, 𝑣⟩ + ⟨curlℎ, curl 𝑣⟩ = 0, 𝜑 ∈ 𝐶∞
𝑐 (Ω𝑛)3. (7.9)

Since 𝐶∞
𝑐 (Ω𝑛)3 is dense in (𝐻0(curl,Ω𝑛), ‖ ⋅ ‖𝐻(curl,Ω𝑛)), equality (7.9) also holds for all 𝜑∈𝐻0(curl,Ω𝑛). Thus we

can choose 𝜑 = ℎ ∈ 𝐻0(curl,Ω𝑛) in (7.9) to obtain

0 ≤ ‖curlℎ‖2 = −‖ℎ‖2 ≤ 0,

so all the inequalities are equalities and hence ℎ = 0.
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Theorem 7.5. Suppose that 𝜎, 𝜀 and 𝜇 satisfy the limiting assumption (2.8). Let (𝜔) ∶= −𝜔(𝜔𝜀 + i𝜎), 𝜔∈ℂ, in
𝐿2(Ω)3 and 𝑛(𝜔) correspondingly in 𝐿2(Ω𝑛)3. Then the limiting essential spectrum of (𝑛)𝑛∈ℕ satisfies

𝜎𝑒((𝑛)𝑛∈ℕ)⊂𝜎𝑒((𝐿∞,𝑛)𝑛∈ℕ) ∪ 𝜎𝑒
(

(𝑃∇𝑛(⋅)|∇𝐻̇1
0 (Ω𝑛)

)𝑛∈ℕ
)

⊂𝑊𝑒(𝐿∞) ∪ 𝜎𝑒
(

𝑃∇(⋅)|∇𝐻̇1
0 (Ω)

)

.

Proof. By Proposition 7.2 we have 𝜎𝑒((𝑛)𝑛∈ℕ) = 𝜎𝑒((𝑛)𝑛∈ℕ). Since 𝑛(𝜔) is a diagonally dominant operator matrix
of order 0 for all 𝑛 ∈ ℕ, 𝜔 ∈ ℂ, with bounds 𝑎 = ‖(𝜔)|∇𝐻̇1

0 (Ω)
‖, 𝑏 = 0 in (8.8) uniform in 𝑛, Theorem 8.6 in Section

8 below implies that its limiting essential spectrum is the union of the limiting essential spectra of its diagonal entries,

𝜎𝑒((𝑛)𝑛∈ℕ) ⊂ 𝜎𝑒((𝐿𝜇,𝑛)𝑛∈ℕ) ∪ 𝜎𝑒
(

(𝑃∇𝑛(⋅)|∇𝐻̇1
0 (Ω𝑛)

)𝑛∈ℕ
)

By Proposition 7.3 it follows that 𝜎𝑒((𝐿𝜇,𝑛)𝑛∈ℕ)=𝜎𝑒((𝐿∞,𝑛)𝑛∈ℕ)⊂ℝ. Next we show

𝜎𝑒((𝐿∞,𝑛)𝑛∈ℕ) ⊂ 𝑊𝑒(𝐿∞).

If 𝜔 ∈ 𝜎𝑒((𝐿∞,𝑛)𝑛∈ℕ), by definition there exist 𝑤𝑛 ∈ dom𝐿∞,𝑛(𝜔) ⊂ 𝐻0(curl,Ω𝑛) ∩𝐻(div 0,Ω𝑛), ‖𝑤𝑛‖ = 1,
𝑛 ∈ ℕ, 𝑤𝑛 ⇀ 0 and 𝐿∞,𝑛(𝜔)𝑤𝑛 → 0 as 𝑛→ ∞. Taking the scalar product with 𝑤𝑛, we find that

⟨𝐿∞,𝑛(𝜔)𝑤𝑛, 𝑤𝑛⟩ = ‖𝜇−1∕2∞ curl0𝑤𝑛‖2 − 𝜀−1∞ 𝜔2 → 0

as 𝑛 → ∞. By Lemma 7.4, for each 𝑛 ∈ ℕ there exists 𝑣𝑛 ∈ 𝐶∞
𝑐 (Ω𝑛)3 ∩ 𝐻(div 0,Ω𝑛) with ‖𝑣𝑛−𝑤𝑛‖2 ≤ 1∕𝑛,

‖curl(𝑣𝑛−𝑤𝑛)‖2≤1∕𝑛. Let 𝑣0𝑛 ∈ 𝐻0(curl,Ω) ∩𝐻(div 0,Ω) be the extension of 𝑣𝑛 to Ω by zero for 𝑛 ∈ ℕ. Then

|‖𝜇−1∕2∞ curl 𝑣0𝑛‖
2−𝜀−1∞ 𝜔2

‖𝑣0𝑛‖
2
|≤ |‖𝜇−1∕2∞ curl𝑤𝑛‖2−𝜀−1∞ 𝜔2

‖𝑤𝑛‖
2
|+
1+𝜀−1∞ 𝜔2

𝑛
→0

as 𝑛→ ∞. Since ‖𝑣0𝑛‖ → 1 as 𝑛→ ∞, upon renormalisation of the elements 𝑣0𝑛, we obtain 𝜔 ∈ 𝑊𝑒(𝐿∞).
Finally, we prove that 𝜎𝑒

(

(𝑃∇𝑛(⋅)|∇𝐻̇1
0 (Ω𝑛)

)𝑛∈ℕ
)

⊂ 𝜎𝑒
(

𝑃∇(⋅)|∇𝐻̇1
0 (Ω)

)

. If 𝜔 ∈ 𝜎𝑒
(

(𝑃∇𝑛(⋅)|∇𝐻̇1
0 (Ω)

)𝑛∈ℕ
)

,
there exist 𝑢𝑛∈𝐻̇1

0 (Ω𝑛), ‖∇𝑢𝑛‖=1, 𝑛∈ℕ, such that ∇𝑢𝑛⇀0 and

‖𝑃∇𝐻̇1
0 (Ω𝑛)

𝜔(𝜔𝜀 + i𝜎)∇𝑢𝑛‖ → 0, 𝑛→ ∞.

Let 𝑢0𝑛 ∈ 𝐻̇1
0 (Ω) be the extension of 𝑢𝑛 ∈ 𝐻̇1

0 (Ω𝑛) to Ω by zero for 𝑛 ∈ ℕ. By standard properties of Sobolev spaces,
∇𝑢0𝑛 = (∇𝑢𝑛)0. Hence the sequence (𝑢0𝑛)𝑛∈ℕ ⊂ 𝐻̇

1
0 (Ω) is such that ‖∇𝑢0𝑛‖ = 1, 𝑛 ∈ ℕ , ∇𝑢0𝑛 ⇀ 0 and

‖𝑃∇𝐻̇1
0 (Ω𝑛)

𝜔(𝜔𝜀+i𝜎)∇𝑢0𝑛‖ → 0, 𝑛→ ∞.

Now the claim follows if we observe that 𝑃∇𝐻̇1
0 (Ω)

𝑓 = 𝑃∇𝐻̇1
0 (Ω𝑛)

𝑓 for all 𝑓 ∈ 𝐿2(Ω)3 with supp 𝑓 ⊂ Ω𝑛.

Remark 7.6. In fact, 𝜎𝑒
(

(𝑃∇𝑛(⋅)|∇𝐻̇1
0 (Ω𝑛)

)𝑛∈ℕ
)

= 𝜎𝑒
(

𝑃∇(⋅)|∇𝐻̇1
0 (Ω)

)

; here the inclusion ‘⊃’ follows by [22,

Prop. 2.7] since 𝑃∇(⋅)|∇𝐻̇1
0 (Ω)

, 𝑃∇𝑛(⋅)|∇𝐻̇1
0 (Ω𝑛)

, 𝑛 ∈ ℕ, are bounded and 𝑃∇𝑛(⋅)|∇𝐻̇1
0 (Ω𝑛)

𝑠
→ 𝑃∇(⋅)|∇𝐻̇1

0 (Ω)
as

𝑛→∞, see [37, Lemma 3.2].

Proof of Theorem 2.4. Due to Theorem 4.5, we have 0 ∈ 𝜎𝑒(𝑉 ) = 𝜎𝑒() and hence 0 ∉ 𝜎poll((𝑉𝑛)𝑛∈ℕ), 0 ∉
𝜎poll((𝑛)𝑛∈ℕ). Then, by (4.6) and (2.7), it follows that

𝜎poll((𝑉𝑛)𝑛∈ℕ)=𝜎poll((𝑉𝑛)𝑛∈ℕ) ⧵ {0}=𝜎poll((𝑛)𝑛∈ℕ) ⧵ {0}=𝜎poll((𝑛)𝑛∈ℕ). (7.10)

S. Bögli, F. Ferraresso, M. Marletta, C. Tretter: Preprint submitted to Elsevier Page 27 of 36



Spectral analysis and domain truncation for Maxwell’s equations

Now (7.6) and Theorem 7.5 imply that

𝜎poll((𝑛)𝑛∈ℕ) ⊂ 𝜎𝑒((𝑛)𝑛∈ℕ) ⊂ 𝑊𝑒(𝐿∞) ∪ 𝜎𝑒
(

𝑃∇(⋅)|∇𝐻̇1
0 (Ω)

)

. (7.11)

Since Theorems 5.5 and 4.5 yield that

𝜎𝑒
(

𝑃∇(⋅)|∇𝐻̇1
0 (Ω)

)

⊂ 𝜎𝑒() = 𝜎𝑒(𝑉 ) ⊂ 𝜎(𝑉 ),

we easily deduce that 𝜎poll((𝑉𝑛)𝑛∈ℕ) ∩ 𝜎𝑒
(

𝑃∇(⋅)|∇𝐻̇1
0 (Ω)

)

= ∅. This, together with (7.10), (7.11) shows that
𝜎poll((𝑉𝑛)𝑛∈ℕ) ⊂ 𝑊𝑒(𝐿∞), as required.

The approximation of isolated eigenvalues outside of 𝜎𝑒((𝑛)𝑛∈ℕ)∪𝜎𝑒((∗
𝑛)𝑛∈ℕ)

∗ = 𝜎𝑒((𝑛)𝑛∈ℕ), and hence outside
of 𝑊𝑒(𝐿∞) ∪ 𝜎𝑒

(

𝑃∇(⋅)|∇𝐻̇1
0 (Ω)

)

by (7.11), is a consequence of Theorem 6.6.

If 𝜎 = 0, we can improve the spectral approximation part in Theorem 2.4 to all spectral points in 𝜎(𝑉 ).

Theorem 7.7. Assume that 𝜎 = 0. In addition to the conclusions of Theorem 2.4, for every 𝜔 ∈ 𝜎(𝑉 ) there exists a
sequence 𝜔𝑛∈𝜎(𝑉𝑛), 𝑛∈ℕ, with 𝜔𝑛→𝜔 as 𝑛→∞.

Proof. When 𝜎=0, the spectral problems for 𝑉 and reduce to classical spectral problems for the self-adjoint operator
matrix  in (3.2). We therefore have a domain truncation problem for a sequence of self-adjoint operators converging
in strong resolvent sense, (𝑛 −𝜔)−1𝑛

𝑠
→ (−𝜔)−1, where 𝑛 ∶= diag(𝑃𝑛, 𝑃𝑛). In fact, the strong convergence

𝑉𝑛(𝜔)−1𝑛
𝑠
→𝑉 (𝜔)−1 follows from (4.7) and Proposition 7.1; here we need that 𝐿2(Ω)3 ⊕𝜇1∕2𝐻(curl,Ω) is dense in

𝐿2(Ω)3⊕𝐿2(Ω)3 and that, for 𝑢∈𝜇1∕2𝐻(curl,Ω), 𝑃𝑛𝑢∈𝜇1∕2𝐻(curl,Ω𝑛) with curl𝜇1∕2𝑃𝑛𝑢=𝑃𝑛 curl𝜇1∕2𝑢 since curl
is a local operator. Then (𝑛−𝜔)−1𝑛

𝑠
→ (−𝜔)−1 by (3.1) and (7.1). The spectral approximation now follows from

classical results, see e.g. [39, Thm. VIII.24 (a)].

8. Abstract results for essential spectra and limiting essential spectra of triangular operator
matrices
In this section we prove the abstract results on essential spectra and limiting essential spectra of triangular operator

matrices used in Theorems 5.5 and 7.5 and employed to prove our main result on spectral approximation, Theorem 2.4.
The results below are more general than what we needed there since we also admit unbounded off-diagonal entries.
Thus we decided to present them in a separate section.

In a product Hilbert space  = 1 ⊕2 we consider lower triangular 2 × 2 operator matrices

 =
(

𝐴 0
𝐶 𝐷

)

(8.1)

such that 𝐴, 𝐷 are densely defined, 𝐶 , 𝐷 are closable, dom(𝐴) ⊂ dom(𝐶) and 𝜚(𝐴) ≠ ∅. Then, e.g. by [40, Thm.
2.2.8],  is closable with closure

 =
(

𝐴 0
𝐶 𝐷

)

.

The Schur Frobenius factorisation [40, (2.2.10)] of  simplifies to

 − 𝜆 =
(

𝐼 0
𝐶(𝐴 − 𝜆)−1 𝐼

)(

𝐴 − 𝜆 0
0 𝐷 − 𝜆

)

, 𝜆 ∈ 𝜚(𝐴), (8.2)

and the first factor therein is bounded and boundedly invertible since 𝐶 is closable and 𝐴 is closed. Therefore,

𝜎𝑒𝑘() ⧵ 𝜎(𝐴) = 𝜎𝑒𝑘(𝐷), 𝑘 = 1,… , 5.

In the sequel we study the relation between 𝜎𝑒𝑘() and the union 𝜎𝑒𝑘(𝐴) ∪ 𝜎𝑒𝑘(𝐷), mainly for 𝑘=2. Here we denote
the set of semi Fredholm operators with finite nullity and finite defect by Φ+ and Φ−, respectively, see [25, Sect. I.3].
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Note that even for diagonal operator matrices  = diag (𝐴,𝐷), i.e. 𝐶 = 0, equality does not prevail for every
𝑘 ∈ {1,… , 5}; in fact, by [25, IX. (5.2)],

𝜎𝑒1(diag (𝐴,𝐷))⊃𝜎𝑒1(𝐴) ∪ 𝜎𝑒𝑘(𝐷),

𝜎𝑒𝑘(diag (𝐴,𝐷))=𝜎𝑒𝑘(𝐴) ∪ 𝜎𝑒𝑘(𝐷), 𝑘=2, 3, (8.3)

𝜎𝑒𝑘(diag (𝐴,𝐷))⊂𝜎𝑒𝑘(𝐴) ∪ 𝜎𝑒𝑘(𝐷), 𝑘=4, 5.

It is well-known that, for 𝐶 ≠ 0, the assumption dom(𝐴) ⊂ dom(𝐶) is essential to have the inclusion 𝜎𝑒𝑘() ⊂
𝜎𝑒𝑘(𝐴) ∪ 𝜎𝑒𝑘(𝐷), 𝑘= 1,… , 5. In fact, if 𝐴, 𝐷 = 0 and 𝐶 is boundedly invertible with dense domain dom(𝐶) ⊊ 1,
then 𝜎𝑒𝑘()=𝜎𝑒1()=ℂ ≠ {0}=𝜎𝑒𝑘(𝐴)=𝜎𝑒𝑘(𝐷) for 𝑘=1,… , 5.

On the other hand, certain relative compactness assumptions may ensure equality; e.g. if for some 𝜇 ∈ 𝜚(𝐴)∩𝜚(𝐷)
the operator (𝐷−𝜇)−1𝐶(𝐴−𝜇)−1 is compact, then, by [40, Thm. 2.4.8],

𝜎𝑒3() = 𝜎𝑒3(𝐴) ∪ 𝜎𝑒3(𝐷).

In the following, for the case 𝑘=2, we characterise the difference between 𝜎𝑒2() and the union 𝜎𝑒2(𝐴) ∪ 𝜎𝑒2(𝐷)
and establish criteria for equality. Here, for a closed linear operator 𝑇 , we set 𝜎∗𝑒2(𝑇 ) ∶= {𝜆 ∈ ℂ ∶ ran(𝑇 −
𝜆) closed, codim ran(𝑇 −𝜆)<∞}; note that then 𝜆 ∈ 𝜎∗𝑒2(𝑇 ) if and only if 𝜆 ∈ 𝜎𝑒2(𝑇 ∗); see [25, Sect. IX.1].

Theorem 8.1. Let  be as in (8.1), i.e.𝐴,𝐷 are densely defined, 𝐶 ,𝐷 are closable, dom(𝐴) ⊂ dom(𝐶) and 𝜚(𝐴) ≠ ∅.
Then

(

𝜎𝑒2(𝐴) ⧵ 𝜎∗𝑒2(𝐷)
)

∪ 𝜎𝑒2(𝐷) ⊂ 𝜎𝑒2() ⊂ 𝜎𝑒2(𝐴) ∪ 𝜎𝑒2(𝐷), (8.4)
and hence

𝜎𝑒2() ∪
(

𝜎𝑒2(𝐴) ∩ 𝜎∗𝑒2(𝐷)
)

= 𝜎𝑒2(𝐴) ∪ 𝜎𝑒2(𝐷);

in particular, if 𝜎∗𝑒2(𝐷) = 𝜎𝑒2(𝐷) or if 𝜎𝑒2(𝐴) ∩ 𝜎∗𝑒2(𝐷) = ∅, then

𝜎𝑒2() = 𝜎𝑒2(𝐴) ∪ 𝜎𝑒2(𝐷).

Proof. First we prove the left inclusion in (8.4). The enclosure 𝜎𝑒2(𝐷) ⊂ 𝜎𝑒2() is trivial; we just add a zero first
component to a singular sequence coming from 𝐷. Now let 𝜆 ∈ 𝜎𝑒2(𝐴) ⧵ 𝜎∗𝑒2(𝐷). Then 𝐷 − 𝜆 ∈ Φ− and hence 𝐷 − 𝜆
has an approximate right inverse 𝑅𝜆 ∈ (2), see [25, Thm. I.3.11], i.e. (𝐷 − 𝜆)𝑅𝜆 = 𝐼2

+ 𝐹𝜆 with 𝐹𝜆 ∈ (2) of
finite rank. Since 𝜆 ∈ 𝜎𝑒2(𝐴), there exists (𝑥𝑛)𝑛∈ℕ ⊂ dom𝐴, ‖𝑥𝑛‖= 1, 𝑥𝑛⇀ 0, (𝐴 − 𝜆)𝑥𝑛→ 0, 𝑛→∞. This implies
that (𝐴𝑥𝑛)𝑛∈ℕ is bounded. Since 𝐶 is closable and dom𝐴⊂dom𝐶 , 𝐶 is 𝐴-bounded and hence (𝐶𝑥𝑛)𝑛∈ℕ is bounded
as well.

Now set 𝑦𝑛 ∶= −𝑅𝜆𝐶𝑥𝑛, 𝑛 ∈ ℕ. Then (𝑦𝑛)𝑛∈ℕ is bounded and, for 𝑛 ∈ ℕ,

𝐶𝑥𝑛 + (𝐷 − 𝜆)𝑦𝑛 = 𝐶𝑥𝑛 − (𝐷 − 𝜆)𝑅𝜆𝐶𝑥𝑛 = 𝐶𝑥𝑛 − (𝐼2
+ 𝐹𝜆)𝐶𝑥𝑛 = −𝐹𝜆𝐶𝑥𝑛.

Since (𝐶𝑥𝑛)𝑛∈ℕ is bounded and 𝐹𝜆 ∈ (2) has finite rank, upon choosing a subsequence, we may assume that

𝐶𝑥𝑛 + (𝐷 − 𝜆)𝑦𝑛 = −𝐹𝜆𝐶𝑥𝑛 → 0, 𝑛→ ∞.

It remains to be shown that 𝑦𝑛=−𝑅𝜆𝐶𝑥𝑛⇀0 for 𝑛→∞. To this end, let 𝜇∈𝜚(𝐴) (≠∅). Then 𝐶(𝐴−𝜇)−1 is bounded
since 𝐶 is closable and 𝐴 is closed. Thus

𝐶𝑥𝑛 = 𝐶(𝐴 − 𝜇)−1
(

(𝐴 − 𝜆)𝑥𝑛
⏟⏞⏞⏟⏞⏞⏟

→0

+(𝜆 − 𝜇) 𝑥𝑛
⏟⏟⏟

⇀0

)

⇀ 0, 𝑛→ ∞,

and hence, since 𝑅𝜆 is bounded, 𝑦𝑛⇀0 for 𝑛→∞, as required. Finally, if we set 𝑣𝑛 ∶= (𝑥𝑛, 𝑦𝑛), 𝑛 ∈ ℕ, and normalise
𝑣𝑛, we obtain a singular sequence for  at 𝜆 and hence 𝜆 ∈ 𝜎𝑒2().
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In order to prove the second inclusion in (8.4), let 𝜆 ∉ 𝜎𝑒2(𝐴)∪𝜎𝑒2(𝐷), i.e. 𝐴−𝜆,𝐷−𝜆 ∈ Φ+. For arbitrary 𝜇>0,
set

𝜇 ∶=𝑀−1
𝜇 𝑀𝜇 =

(

𝐴 0
𝜇𝐶 𝐷

)

, 𝑀𝜇 ∶=
(

𝜇𝐼 0
0 𝐼

)

. (8.5)

Then 𝜎𝑒2()=𝜎𝑒2(𝜇) because 𝑀𝜇 is bounded and boundedly invertible. Due to the stability of semi-Fredholmness,
see [25, Thm. I.3.22, Rem. I.3.27], and since diag (𝐴−𝜆,𝐷−𝜆)∈Φ+, we can choose 𝜇>0 so small that 𝜇−𝜆∈Φ+

and thus 𝜆∉𝜎𝑒2().
Finally, the last two claims are obvious from (8.4).

Remark 8.2. For the second inclusion in (8.4), in the same way as in the proof of Theorem 8.1, one can also show
that 𝜎𝑒𝑘() ⊂ 𝜎𝑒𝑘(𝐴) ∪ 𝜎𝑒𝑘(𝐷) for 𝑘 = 3, 4, 5. Here the Fredholm stability results [EE, Thm. I.3.22 and Rem. I.3.27]
for Φ± and hence Φ, together with the stability of the index therein, give the inclusions for 𝑘 = 3, 4, while for 𝑘 = 5
the stability of bounded invertibility [27, Thm. IV.1.16] is used.

The first inclusion in (8.4) also holds for 𝑘 = 3, i.e. 𝜎𝑒3() ∪
(

𝜎𝑒3(𝐴) ∩ 𝜎∗𝑒3(𝐷)
)

= 𝜎𝑒3(𝐴) ∪ 𝜎𝑒2(𝐷), whereas for
𝑘=4 the difference between 𝜎𝑒4() and 𝜎𝑒4(𝐴) ∪ 𝜎𝑒4(𝐷) has a much less elegant description.

Corollary 8.3. Let  be as in (8.1). If 𝐷 is  -self-adjoint for some conjugation  in 2, i.e.  2=𝐼2
, ( 𝑥, 𝑦) =

(𝑥, 𝑦) for 𝑥, 𝑦 ∈ 2, then
𝜎𝑒𝑘() = 𝜎𝑒𝑘(𝐴) ∪ 𝜎𝑒𝑘(𝐷), 𝑘 = 2, 3, 4.

Proof. We prove the claim for 𝑘 = 2; the proof for 𝑘 = 3, 4 is left to the reader. Since 𝐷 is  -self-adjoint,
dim ker(𝐷 − 𝜆) = dim ker(𝐷∗ − 𝜆) for 𝜆 ∈ ℂ by [25, Lemma III.5.4]. Hence, either ran(𝐷 − 𝜆) is not closed or
dim ker(𝐷−𝜆) = dim ran(𝐷−𝜆)⟂ so that𝐷−𝜆 is a Fredholm of index 0 for 𝜆 ∈ ℂ. This proves that 𝜎𝑒2(𝐷) = 𝜎∗𝑒2(𝐷)
and hence Theorem 8.1 yields the claim.

The following counter-examples show that, in general, neither of the inclusions in (8.4) is an equality, even when
all entries of  are bounded.

Example 8.4. Let 𝐷 ∈ (2) be a bounded linear operator in some Hilbert space 2 such that 0 ∈ 𝜎∗𝑒2(𝐷) ⧵ 𝜎𝑒2(𝐷),
e.g. dim ker𝐷 < ∞ and dim(ran𝐷)⟂ = ∞. For example, we can choose 𝐷 ∶ 𝓁2(ℕ) → 𝓁2(ℕ) given by 𝐷𝑒𝑘 ∶= 𝑒2𝑘,
𝑘 ∈ ℕ.

i) If 𝐴 in 1=2 is compact with 𝜎𝑒2(𝐴)={0}, 𝐶=𝐴 and 𝐷 is as above, then, for  as in (8.1),

0 ∉
(

𝜎𝑒2(𝐴) ⧵ 𝜎∗𝑒2(𝐷)
)

∪ 𝜎𝑒2(𝐷) = 𝜎𝑒2(𝐷), 0 ∈ 𝜎𝑒2();

for the latter note that since 0 ∈ 𝜎𝑒2(𝐴), there exists a singular sequence (𝑥𝑛)𝑛∈ℕ for𝐴 and then, since𝐶 = 𝐴, it follows
that ((𝑥𝑛, 0))𝑛∈ℕ is a singular sequence for . This example shows that the first inclusion in (8.4) is not an equality.

ii) If 𝑃(ran𝐷)⟂ is the orthogonal projection on (ran𝐷)⟂= ker𝐷∗, 𝐴= 𝐼−𝑃(ran𝐷)⟂ in 1 =2 and 𝐶 = 𝑃(ran𝐷)⟂ ,
then ker 𝐴 = (ran𝑃 )⟂ so that 0 ∈ 𝜎𝑒2(𝐴) and, for  as in (8.1),

0 ∉ 𝜎𝑒2(), 0 ∈ 𝜎𝑒2(𝐴) ∩
(

𝜎∗𝑒2(𝐷)⧵𝜎𝑒2(𝐷)
)

⊂ 𝜎𝑒2(𝐴)∪𝜎𝑒2(𝐷).

To prove the former, suppose to the contrary that 0 ∈ 𝜎𝑒2(). Then there would exist a sequence ℎ𝑛 = (𝑥𝑛, 𝑦𝑛)𝑡 ∈
1 ⊕1 such that ‖ℎ𝑛‖=1, ℎ𝑛⇀0 for 𝑛→∞, and

(𝐼 − 𝑃(ran𝐷)⟂ )𝑥𝑛 → 0,
𝑃(ran𝐷)⟂𝑥𝑛 +𝐷𝑦𝑛 → 0,

𝑛→ ∞. (8.6)

The second relation in (8.6) implies 𝑃(ran𝐷)⟂𝑥𝑛→ 0 and 𝐷𝑦𝑛→ 0 as 𝑛→∞. Together with the first relation in (8.6),
we conclude that 𝑥𝑛 → 0 and hence ‖𝑦𝑛‖ → 1 for 𝑛→ ∞; hence upon choosing a subsequence we can assume that
𝑦𝑛 ≠ 0, 𝑛 ∈ ℕ. Since ℎ𝑛 ⇀ 0 for 𝑛→∞ implies that 𝑦𝑛 ⇀ 0 for 𝑛→∞, we conclude that 𝑦𝑛 ∶= 𝑦𝑛∕‖𝑦𝑛‖, 𝑛 ∈ ℕ, is a
singular sequence for 𝐷, a contradiction, since 0 ∉ 𝜎𝑒2(𝐷). This example proves that the second inclusion in (8.4) is
not an equality.
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Remark 8.5. We mention that Theorem 8.1, see also Corollary 8.3, provides a direct proof of [4, Prop. 25] on
Maxwell’s equations. Indeed, our results apply to the lower triangular operator matrix 𝑉𝜔 in [4, (26)] therein whose
entries 𝐴𝜔, 𝐶𝜔, 𝐷𝜔 are 2 × 2 operator matrices themselves with unbounded entries. Standard computations show that
𝜎𝑒2(𝐷𝜔) = 𝜎∗𝑒2(𝐷𝜔) and hence Theorem 8.1 yields the equality 𝜎𝑒2(𝑉𝜔) = 𝜎𝑒2(𝜔) ∪ 𝜎𝑒2(𝜔), which had to be proved
in [4, Prop. 25] for the concrete operators therein.

Finally, we provide some results on the limiting essential spectrum of sequences of lower triangular operator
matrices. The first results of this kind were established in the thesis [41, Sect. 2.3] without the assumption of
triangularity for bounded off-diagonal corners.

Let 0 = 1,0 ⊕ 2,0 be a Hilbert space, 𝑖, 𝑖,𝑛 ⊂ 𝑖,0 be closed subspaces for 𝑛 ∈ ℕ and 𝑖 = 1, 2. Let
𝑃𝑖 ∶ 𝑖,0 → 𝑖, 𝑃𝑖,𝑛 ∶ 𝑖,0 → 𝑖,𝑛, 𝑛 ∈ ℕ, be the corresponding orthogonal projections and assume that 𝑃𝑖,𝑛

𝑠
→ 𝑃𝑖 in

𝑖,0.
In addition to  as in (8.1), in the subspaces 𝑛 = 1,𝑛 ⊕ 2,𝑛 of 0 = 1,0 ⊕ 2,0, 𝑛 ∈ ℕ, we consider the

lower triangular operator matrices
𝑛 =

(

𝐴𝑛 0
𝐶𝑛 𝐷𝑛

)

(8.7)

satisfying analogous assumptions as , i.e. 𝐴𝑛,𝐷𝑛 are densely defined, 𝐶𝑛,𝐷𝑛 are closable, dom(𝐴𝑛) ⊂ dom(𝐶𝑛) and
𝜚(𝐴𝑛) ≠ ∅.

While the assumptions ensure that each 𝐶𝑛 is 𝐴𝑛-bounded, we suppose that the operator sequence (𝐶𝑛)𝑛∈ℕ is
uniformly (𝐴𝑛)𝑛∈ℕ-bounded, i.e. there exist 𝑎, 𝑏 > 0 and 𝑁 ∈ ℕ such that

‖𝐶𝑛𝑥‖
2 ≤ 𝑎‖𝑥‖2 + 𝑏‖𝐴𝑛𝑥‖, 𝑥 ∈ dom(𝐴𝑛), 𝑛 ∈ ℕ, 𝑛 ≥ 𝑁. (8.8)

Theorem 8.6. Let 𝑛 be defined as in (8.7), 𝑛 ∈ ℕ, and assume that (𝐶𝑛)𝑛∈ℕ is uniformly (𝐴𝑛)𝑛∈ℕ-bounded, i.e. (8.8)
holds. Then

𝜎𝑒2((𝐷𝑛)𝑛∈ℕ) ⊂ 𝜎𝑒2((𝑛)𝑛∈ℕ) ⊂ 𝜎𝑒2((𝐴𝑛)𝑛∈ℕ) ∪ 𝜎𝑒2((𝐷𝑛)𝑛∈ℕ).

Proof. The proof is similar to the proof of the respective parts of the proof of Theorem 8.1; note that, due to assumption
(8.8), we can choose 𝜇 > 0 in the transformation of 𝑛, see (8.5), independently of 𝑛 ∈ 𝐼 ⊂ ℕ. The proof is also
analogous to the proof of [41, Prop. 2.3.1 i)] if we observe that the sequence 𝐵𝑛 = 0 of zero operators is discretely
compact and we replace the uniform boundedness property of (‖𝐶𝑛‖)𝑛∈ℕ therein by (8.8). We leave the details to the
reader.

Appendix - Computations for Example 2.6
In this appendix we provide the computations for Example 2.6 where we considered the semi-infinite cylinder

Ω=(0,∞)×(0, 𝐿2)×(0, 𝐿3) and supposed that 𝜀=𝜇=id everywhere, and 𝜎=id if 𝑥1∈(0, 1), else 𝜎=0, i.e. 𝜎=𝜒𝐾 id
with 𝐾 ∶= (0, 1)×(0, 𝐿2)×(0, 𝐿3).

With this choice of the coefficients the Maxwell system in Ω in (1.1) becomes

curl2 𝐸 = 𝜔(𝜔 + i)𝐸, 0 < 𝑥1 < 1,

curl2 𝐸 = 𝜔2𝐸, 1 < 𝑥1 < 𝑋𝑛,

with the condition that 𝐸 and curl𝐸 are continuous across the interface 𝑥1 = 1. The boundary condition in (1.1) was
𝜈 × 𝐸 = 0 on the boundary 𝜕Ω. We use the notation 𝐧 = (𝑛2, 𝑛3) ∈ ℕ2

0.
Case 1, 𝒙𝟏 ∈ (𝟎, 𝟏): For this range of 𝑥1, if we set

𝛼𝐧(𝜔) ∶=
√

𝜋2𝑛22∕𝐿
2
2 + 𝜋

2𝑛23∕𝐿
2
3 − 𝜔(𝜔 + i),

the correct ansatz to use for the solution of this problem by Fourier expansions is

𝐸1(𝑥1, 𝑥2, 𝑥3) =
∑

𝐧∈ℕ2

𝐸̂1(𝐧) sin
(

𝜋𝑛2
𝐿2

𝑥2

)

sin
(

𝜋𝑛3
𝐿3

𝑥3

)

cosh(𝛼𝐧(𝜔)𝑥1)
cosh(𝛼𝐧(𝜔))

,
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𝐸2(𝑥1, 𝑥2, 𝑥3) =
∑

𝐧∈ℕ0×ℕ
𝐸̂2(𝐧) cos

(

𝜋𝑛2
𝐿2

𝑥2

)

sin
(

𝜋𝑛3
𝐿3

𝑥3

)

sinh(𝛼𝐧(𝜔)𝑥1)
sinh(𝛼𝐧(𝜔))

,

𝐸3(𝑥1, 𝑥2, 𝑥3) =
∑

𝐧∈ℕ×ℕ0

𝐸̂3(𝐧) sin
(

𝜋𝑛2
𝐿2

𝑥2

)

cos
(

𝜋𝑛3
𝐿3

𝑥3

)

sinh(𝛼𝐧(𝜔)𝑥1)
sinh(𝛼𝐧(𝜔))

.

Case 2, 𝒙𝟏 ∈ (𝟏, 𝑿𝒏): For this range of 𝑥1, if we set

𝛽𝐧(𝜔) ∶=
√

𝜋2𝑛22∕𝐿
2
2 + 𝜋

2𝑛23∕𝐿
2
3 − 𝜔

2,

the correct ansatz to use for the solution of this problem by Fourier expansions is

𝐸1(𝑥1, 𝑥2, 𝑥3) =
∑

𝐧∈ℕ2

𝐸̂1(𝐧) sin
(

𝜋𝑛2
𝐿2

𝑥2

)

sin
(

𝜋𝑛3
𝐿3

𝑥3

)

cosh(𝛽𝐧(𝜔)(𝑋𝑛 − 𝑥1))
cosh(𝛽𝐧(𝜔)(𝑋𝑛 − 1))

,

𝐸2(𝑥1, 𝑥2, 𝑥3) =
∑

𝐧∈ℕ0×ℕ
𝐸̂2(𝐧) cos

(

𝜋𝑛2
𝐿2

𝑥2

)

sin
(

𝜋𝑛3
𝐿3

𝑥3

)

sinh(𝛽𝐧(𝜔))(𝑋𝑛 − 𝑥1))
sinh(𝛽𝐧(𝜔)(𝑋𝑛 − 1))

,

𝐸3(𝑥1, 𝑥2, 𝑥3) =
∑

𝐧∈ℕ×ℕ0

𝐸̂3(𝐧) sin
(

𝜋𝑛2
𝐿2

𝑥2

)

cos
(

𝜋𝑛3
𝐿3

𝑥3

)

sinh(𝛽𝐧(𝜔)(𝑋𝑛 − 𝑥1))
sinh(𝛽𝐧(𝜔)(𝑋𝑛 − 1))

.

In the definition of 𝛼𝐧(𝜔) and 𝛽𝐧(𝜔) we choose the branch of the square root with non-negative real part. The above
two ansätze ensure the continuity of 𝐸 across the interface 𝑥1 = 1. To ensure continuity of curl𝐸 across this interface,
a direct calculation shows that the first component of curl𝐸 is automatically continuous across the interface 𝑥1 = 1; it
is therefore 𝜈 × curl𝐸 for 𝜈 = (1, 0, 0) that gives rise to non-trivial conditions. Direct calculations using the formulae
above yield the condition that for some 𝐧 ∈ ℕ2

0 with |𝐧| > 0,

𝛼𝐧(𝜔) coth(𝛼𝐧(𝜔)) + 𝛽𝐧(𝜔) coth(𝛽𝐧(𝜔)(𝑋𝑛 − 1)) = 0.

Next we prove equation (2.9), namely

𝜎𝑒(𝑉 ) = (−∞,−𝜋∕𝐿] ∪ [𝜋∕𝐿,+∞) ∪ (−i{0, 1∕2, 1}), 𝐿 = max{𝐿2, 𝐿3}.

Indeed, due to [4, Thm. 6], see also Remark 5.7, we have

𝜎𝑒(𝑉 ) = 𝜎𝑒(𝑉 0) ∪ 𝜎𝑒(div((⋅)∇)), (𝜔) ∶= −𝜔(𝜔 + i𝜒𝐾 ), 𝜔 ∈ ℂ,

where 𝑉 0 is the Maxwell pencil i𝑉 (⋅) with 𝜎=0 and div((𝜔)∇) acts from 𝐻̇1
0 (Ω) to its dual 𝐻̇−1(Ω) for each 𝜔 ∈ ℂ.

Clearly, 𝜎𝑒(div(⋅)∇))={0} ∪ 𝜎𝑒(div( (⋅)∇)) with  (𝜔)∶=−(𝜔 + i𝜒𝐾 ), 𝜔∈ℂ. We start by showing

𝜎𝑒(div( (⋅)∇)) = −i{0, 1∕2, 1}. (8.9)

By inspection, one has the inclusion 𝜎𝑒(div (⋅))∇)) ⊂ −i[0, 1]. The values 𝜔 = 0 and 𝜔 = −i are both easily seen to
be eigenvalues of infinite multiplicity, with eigenfunctions which are 𝐶∞

𝑐 -functions supported entirely outside 𝐾 (for
𝜔 = 0 where  (0)=−i𝜒𝐾 ) or in the interior of𝐾 (for 𝜔 = −i where  (−i)=−i𝜒Ω⧵𝐾 ). It remains to examine whether
any other𝜔 ∈ −i[0, 1] have the property that 0 lies in the essential spectrum of the Dirichlet operator−div((𝜔+i𝜒𝐾 )∇).
Since the coefficient𝜔+i𝜒𝐾 takes only the values𝜔+i and𝜔, whose ratio is 1+i∕𝜔, the results in [42] suggest that the
only value of 𝜔 for which this may happen is 𝜔 = −i∕2, which has the property that 1 + i∕𝜔 = −1. Unfortunately the
hypotheses in [42] do not quite cover our case, so we outline a proof by direct calculation. By Glazman decomposition,
one shows that

−div((𝜔 + i𝜒𝐾 )∇) is invertible ⟺ (−i𝜔 + 1)Λ𝐿 − i𝜔Λ𝑅 is invertible,

where Λ𝐿 and Λ𝑅 are the left- and right-hand Dirichlet to Neumann maps on the interface 𝑥1 = 1. Take a basis
of transverse eigenfunctions (𝜓𝑛(𝑥2, 𝑥3))𝑛∈ℕ, e.g. some ordering of sin

(

𝑛2𝜋
𝐿2
𝑥2
)

sin
(

𝑛3𝜋
𝐿3
𝑥3
)

, with strictly positive
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eigenvalues (𝜅2𝑛 )𝑛∈ℕ. In such a basis, both Λ𝐿 and Λ𝑅 are represented by diagonal matrices,

Λ𝐿 = diag((𝜅𝑛 coth(𝜅𝑛))𝑛∈ℕ), Λ𝑅 = diag((𝜅𝑛)𝑛∈ℕ).

Putting 𝜔 = −i𝜈 with 𝜈 ∈ (0, 1), we find

(−i𝜔 + 1)Λ𝐿 − i𝜔Λ𝑅 = diag((𝜅𝑛((1 − 𝜈) coth(𝜅𝑛) − 𝜈))𝑛∈ℕ).

If 0 < 𝜈 < 1∕2, then this infinite matrix has a bounded, positive inverse, so no 𝜔 ∈ −i(0, 1∕2) lies in the essential
spectrum. If 1∕2 < 𝜈 < 1, then the matrix has (at worst) a finite-dimensional kernel, but is still a finite-rank perturbation
of a matrix with bounded inverse. From this fact and the Glazman decomposition, one is able to argue that 0 lies outside
the essential spectrum of −div((𝜔 + i𝜒𝐾 )∇) for 𝜔 ∈ −i(1∕2, 1). It remains only to show that 𝜔 = −i∕2 does indeed
have the property that 0 lies in the essential spectrum of −div((𝜔 + i𝜒𝐾 )∇). We prove this by directly verifying that
the functions

𝑢𝑛(𝑥1, 𝑥2, 𝑥3) ∶=

{

(1−(𝑥1−1)𝜅𝑛(coth(𝜅𝑛)−1))𝜓𝑛(𝑥2, 𝑥3)
sinh(𝜅𝑛𝑥1)
sinh(𝜅𝑛)

, 𝑥1∈(0, 1),

𝜓𝑛(𝑥2, 𝑥3) exp(−𝜅𝑛(𝑥1−1)), 𝑥1 > 1,

form a Weyl singular sequence for −div((−i∕2+i𝜒𝐾 )∇) acting from 𝐻̇1
0 (Ω) to 𝐻̇−1(Ω). They satisfy the compatibility

conditions across 𝑥1=1 and, by direct calculation,

−div((−i∕2 + i𝜒𝐾 )∇𝑢𝑛) = ±(i∕2)Δ𝑢𝑛,

with − for 𝑥1 < 1 and + for 𝑥1 > 1. Since Δ𝑢𝑛 = 0 for 𝑥1 > 1, we have

−div((−i∕2 + i𝜒𝐾 )∇𝑢𝑛) = −(i∕2)Δ𝑢𝑛

in all cases, and it suffices to show that

‖Δ𝑢𝑛‖𝐻̇−1(Ω)

‖𝑢𝑛‖𝐻̇1
0 (Ω)

→ 0, 𝑛→ ∞. (8.10)

Since the Dirichlet Laplacian in Ω has spectrum [𝜅21 ,∞), we have Δ≥𝜅21 and thus, by testing with 𝐶∞
𝑐 (Ω) functions,

one may show that

‖Δ𝑢𝑛‖𝐻̇−1(Ω)≤
1
𝜅1

‖Δ𝑢𝑛‖𝐿2(Ω).

By direct calculation, Δ𝑢𝑛 is non-trivial only for 𝑥1 ≤ 1, and

Δ𝑢𝑛 = −2𝜅2𝑛 (coth(𝜅𝑛) − 1)𝜓𝑛(𝑥2, 𝑥3)
cosh(𝜅𝑛𝑥1)
sinh(𝜅𝑛)

.

It follows from elementary estimates that, for 𝑛→ ∞,

‖Δ𝑢𝑛‖𝐿2(Ω) ≤ O(𝜅2𝑛 (coth(𝜅𝑛)−1)) ‖𝜓𝑛‖𝐿2((0,𝐿2)×(0,𝐿3)),

‖∇𝑢𝑛‖𝐿2(Ω) ≥ ‖∇𝑢𝑛‖𝐿2((1,∞)×(0,𝐿2)×(0,𝐿3)) ≥ O(𝜅1∕2𝑛 ) ‖𝜓𝑛‖𝐿2((0,𝐿2)×(0,𝐿3)),

and hence
‖Δ𝑢𝑛‖𝐻̇−1(Ω)

‖𝑢𝑛‖𝐻̇1
0 (Ω)

≤ 1
𝜅1

‖Δ𝑢𝑛‖𝐿2(Ω)

‖∇𝑢𝑛‖𝐿2(Ω)
= O(𝜅3∕2𝑛 (coth(𝜅𝑛) − 1)).

This completes the proof of (8.10) and hence of (8.9).
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Regarding 𝜎𝑒(𝑉 0), we can use the Fourier expansion

𝐸1(𝑥1, 𝑥2, 𝑥3) =
∑

𝐧∈ℕ2

𝐸̂1(𝐧) sin
(

𝜋𝑛2
𝐿2

𝑥2

)

sin
(

𝜋𝑛3
𝐿3

𝑥3

)

cos(𝜉𝑥1),

𝐸2(𝑥1, 𝑥2, 𝑥3) =
∑

𝐧∈ℕ0×ℕ
𝐸̂2(𝐧) cos

(

𝜋𝑛2
𝐿2

𝑥2

)

sin
(

𝜋𝑛3
𝐿3

𝑥3

)

sin(𝜉𝑥1),

𝐸3(𝑥1, 𝑥2, 𝑥3) =
∑

𝐧∈ℕ×ℕ0

𝐸̂3(𝐧) sin
(

𝜋𝑛2
𝐿2

𝑥2

)

cos
(

𝜋𝑛3
𝐿3

𝑥3

)

sin(𝜉𝑥1).

In the new Fourier coordinates the matrix differential expression
(

−i𝜔 curl
curl i𝜔

)

corresponds to

(𝜔, 𝜉, 𝑛2, 𝑛3) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−i𝜔 0 0 0 𝜋𝑛3
𝐿3

−𝜋𝑛2
𝐿2

0 −i𝜔 0 −𝜋𝑛3
𝐿3

0 −𝜉
0 0 −i𝜔 𝜋𝑛2

𝐿2
𝜉 0

0 −𝜋𝑛3
𝐿3

𝜋𝑛2
𝐿2

i𝜔 0 0
−𝜋𝑛3
𝐿3

0 −𝜉 0 i𝜔 0
−𝜋𝑛2
𝐿2

𝜉 0 0 0 i𝜔

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Then we have
det (𝜔, 𝜉, 𝑛2, 𝑛3) = 𝜔2

(

𝜉2 +
𝜋2𝑛22
𝐿2
2

+
𝜋2𝑛23
𝐿2
3

− 𝜔2
)2
.

As in [4, Ex. 10] the essential spectrum is the set of 𝜔 ∈ ℂ such that for some 𝜉 ∈ ℝ and (𝑛2, 𝑛3) ≠ (0, 0), one has
det (𝜔, 𝜉, 𝑛2, 𝑛3) = 0. This yields

𝜎𝑒(𝑉 0) = {0} ∪
{

𝜔 ∈ ℝ ∶ 𝜔2 ≥ 𝜋2

max{𝐿2
2, 𝐿

2
3}

}

.
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