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Abstract 

Individual recombinant components of pyruvate and 2-oxoglutarate 

dehydrogenase multienzyme complexes (PDHc, OGDHc) of human and Escherichia coli 

(E. coli) origin were expressed and purified from E. coli with optimized protocols. The 

four multienzyme complexes were each reconstituted under optimal conditions at 

different stoichiometric ratios. Binding stoichiometries for the highest catalytic efficiency 

were determined from the rate of NADH generation by the complexes at physiological 

pH. Since some of these complexes were shown to possess ‘moonlighting’ activities 

under pathological conditions often accompanied by acidosis, activities were also 

determined at pH 6.3. As reactive oxygen species (ROS) generation by the E3 component 

of hOGDHc is a pathologically relevant feature, superoxide generation by the complexes 

with optimal stoichiometry was measured by the acetylated cytochrome c reduction 

method in both the forward and the reverse catalytic directions. Various known affectors 

of physiological activity and ROS production, including Ca
2+

, ADP, lipoylation status or

pH, were investigated. The human complexes were also reconstituted with the most 

prevalent human pathological mutant of the E3 component, G194C and characterized; 

isolated human E3 with the G194C substitution was previously reported to have an 

enhanced ROS generating capacity. It is demonstrated that: i. PDHc, similarly to 

OGDHc, is able to generate ROS and this feature is displayed by both the E. coli and 

human complexes, ii. Reconstituted hPDHc generates ROS at a significantly higher rate 

as compared to hOGDHc in both the forward and the reverse reactions when ROS 

generation is calculated for unit mass of their common E3 component, iii. The E1 

component or E1-E2 subcomplex generates significant amount of ROS only in hOGDHc; 

iv. Incorporation of the G194C variant of hE3, the result of a disease-causing mutation,
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into reconstituted hOGDHc and hPDHc indeed leads to a decreased activity of both 

complexes and higher ROS generation by only hOGDHc and only in its reverse reaction. 

Keywords 

2-oxoglutarate dehydrogenase complex; alpha-ketoglutarate dehydrogenase complex; 

pyruvate dehydrogenase complex; reactive oxygen species; E3 deficiency; oxidative 

stress 
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Abbreviations 

OGDHc, 2-oxoglutarate (also known as alpha-ketoglutarate) dehydrogenase complex; 

PDHc, pyruvate dehydrogenase complex; OG, 2-oxoglutarate; cyt c, cytochrome c; LA, 

lipoic acid; EDTA, ethylene diamine tetraacetic acid; FAD, flavin adenine dinucleotide; 

LADH, (dihydro)lipoamide dehydrogenase (E3 component); MW, molecular weight; 

NAD
+
/NADH, nicotinamide adenine dinucleotide (oxidized/reduced forms); ROS, the

reactive oxygen species superoxide anion and hydrogen peroxide; SOD, superoxide 

dismutase; Tris, 2-amino-2-hydroxymethyl-propane-1,3-diol; wt, wild-type; ThDP, 

thiamin diphosphate; CoA, Coenzyme A; ec, E. coli origin; h, human origin. 
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Introduction 

Pyruvate and 2-oxoglutarate(OG, also known as -ketoglutarate) dehydrogenase 

complexes (PDHc/OGDHc orGDHc) are central enzymes in all forms of aerobic 

metabolism catalyzing the oxidative decarboxylation of pyruvate and OG, respectively, 

generating NADH. Although the mechanisms of action and metabolic roles of these 

enzymes have long been established [1-6], they continuously regain interest due to the 

new pathological aspects and moonlighting activities discovered in the last decade [7-13]. 

The implications of OGDHc in oxidative stress were recently reviewed [14, 15]. 

PDHc and OGDHc consist of three major components: E1 (pyruvate/2-

oxoglutarate dehydrogenase, EC 1.2.4.1/1.2.4.2), E2 (dihydrolipoyl (or 

dihydrolipoamide) transacetylase/transsuccinylase (or acetyl/succinyltransferase), EC 

2.3.1.12/2.3.1.61), and E3 (dihydrolipoyl (or (dihydro)lipoamide) dehydrogenase, EC 

1.8.1.4) [3, 16-22]. The E3 component (lipoamide dehydrogenase, LADH) is common to 

both complexes in the same cell [23, 24], but LADH is also part of the branched-chain 

keto-acid dehydrogenase complex and the glycine cleavage system [1]. There are 

differences among the prokaryotic and eukaryotic enzymes and also between the 

respective PDH and OGDH complexes in minor but functionally important additional 

components, the number of lipoyl domains and subunit stoichiometry (see Results and SI) 

[2, 3, 16, 25], showing the versatility of these multienzyme complexes as well as the 

possibility of fine-tuning their function through structural assembly, in different 

biochemical environments.    
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The overall dehydrogenase reactions by PDHc or OGDHc are irreversible, 

although when NADH is in excess both complexes consume NADH in a reverse reaction 

catabolized by E3 [26] (see below). 

The isolated mammalian (porcine heart) OGDHc and PDHc were shown to 

generate superoxide anion radical and hydrogen peroxide under pathologically relevant 

conditions (high NADH/NAD
+
 ratio, acidosis) [7, 8, 27] and OGDHc was reported to

serve as a major source of oxidative stress related to senescence/aging, ischemia-

reperfusion or neurodegeneration [7, 8, 14, 15, 27-37]. OGDHc is not only a source but 

also a sensitive target of reactive oxygen species (ROS) in mitochondria [5, 38-41]; 

hypoxia- and glutamate-induced cerebral damage was strongly linked to the inactivation 

of OGDHc [34]. The mammalian PDHc was demonstrated to be a much weaker ROS 

generator compared to OGDHc [7, 11, 13]; the reason for this still appears obscure [13, 

36, 42]. PDHc is also sensitive to ROS, and its functional integrity is implicated to be 

important for neuronal longevity and survival [43, 44]. ROS generation by prokaryotic 

OGDHc or PDHc and its potential role have not been investigated before. 

Earlier, ROS generation by OGDHc and PDHc was ascribed to the E3 

flavoenzyme component (LADH) [7, 8]; ROS generation by LADH has been addressed 

in several studies using isolated (mammalian) LADH or in silico approaches [26, 27, 31, 

37, 42, 45-50]. It was found that ROS production by LADH is potentiated by Zn
2+

 [47],

acidosis [27], is relevant to ischemia/reperfusion and possibly to Alzheimer’s disease (for 

Zn
2+

). LADH’s specific disease-causing mutations [37, 42, 45, 50] are relevant to

multiple pathologies related to E3-deficiency (collected most recently in [51]). Although 

the primary site for ROS generation in PDHc and OGDHc had been ascribed to the E3 
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component [7, 8], there are recent results suggesting the potential involvement of the E1 

component, or perhaps even of the E2 component: the isolated E1o (o for OGDHc) 

component of E. coli (ecE1o) as well as the E1p (p for PDHc) component of Bacillus 

stearothermophilus have been shown to generate H2O2 through radical formation via the 

thiamin diphosphate (ThDP) cofactor [52] and our groups have recently reported 

superoxide and H2O2 generation by the human E1o component [12]. It should be noted 

that other enzymes dependent on ThDP have also been found to generate stable radicals 

by ThDP, such as pyruvate ferredoxin oxidoreductase and pyruvate oxidase [53]. The E3 

component is bound to PDHc ~30 times stronger than to OGDHc [54-56], and there are 

indications that LADH may exist, and potentially generate ROS, as an independent 

enzyme [25, 27, 54, 57, 58]. Involvement of the E1-E2 sub-complexes of mammalian 2-

oxoacid dehydrogenase complexes in ROS generation was speculated based upon indirect 

findings [27, 59], but could not be examined earlier in the absence of pure isolated 

components of the complexes. 

In this study we expressed in E. coli and purified all components of both human 

and E. coli OGDHc and PDHc. We determined the catalytic and the superoxide-

generating activities of the reconstituted complexes under various conditions to address: 

i. The optimal stoichiometry of components leading to the highest catalytic activity, ii.

The effect of pH and several other known regulators (lipoylation status, Ca
2+

, ADP) on

the catalytic activities, iii. The effect of different levels of reconstitution (E1, E1-E2, E1-

E2-E3) and known regulators (see above) on superoxide generation in the forward and 

the reverse modes for each complex, iv. A quantitative comparison of superoxide 

generation by OGDHc versus PDHc and their respective prokaryotic versus eukaryotic 
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complexes, and v. The effect of the most prevalent human pathological mutation of the 

E3 component, G194C on the activity and superoxide generation by PDHc or KGDHc.  
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Materials and Methods 

Protein Expression and Purification 

The methods for overexpression and purification of E. coli E1p, 1-lip E2p and E3 

components were described earlier [60-62]. Overexpression and purification of the E. coli 

E1o, E2o and E3 components was also as reported earlier [63]. The human PDHc 

components were expressed and purified as reported in the literature (E1p [64], 

E2p.E3BP [65-67], E3 [68], and Gly194Cys E3 [37]). The human E1o, E2o (and E3) 

components were expressed and purified as reported recently [12]. Lipoyl ligase was 

expressed and purified as before [69] 

Reconstitution of the Multienzyme Complexes 

In this paper, for the purpose of enzymatic activity measurement, the mass ratio (g: g: 

g) of the individual components assembled into complexes was applied rather than the 

molar ratio of their subunits (M: M: M), both of which have been reported in the 

literature. Generally, the mass ratio (g: g: g) of 1:1:1 was tested first and then 

conditions of component assembly were optimized for each complex individually, taking 

into account the subunit stoichiometry reported in the literature (see Supporting 

Information for reconstitution of each individual complex and the corresponding Figure 

Legends). 

Measurement of Enzyme Activity 
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NADH production by pyruvate and 2-oxoglutarate dehydrogenase complexes. The 

experiments for measurement of the overall complex activity were designed taking into 

consideration the pH optimum of the reaction for each individual complex, the values of 

Km for pyruvate and 2-oxoglutarate and the values of Km for ThDP also reported in the 

literature [70-78]. The initial rate of NADH production by the complexes was detected at 

340 nm in EIA/RIA 96-well, flat-bottom, polystyrene plates (Corning, Lowell, MA, 

USA) using a Spectramax M2 (Molecular Devices, Sunnyvale, CA, USA) or a Victor 3 

(Perkin Elmer, Waltham, MA, USA) multi-label counter spectrophotometer/fluorimeter 

at 37 
o
C. Assay conditions were the following in a 300 L final reaction volume: 50 mM

K2HPO4 (pH 7.3 or 6.3), 0.2 mM ThDP, 2.5 mM NAD
+
, 1 mM Mg

2+
, 0.1 mM CoA, and

2 mM pyruvate or 2 mM  oxoglutarate according to the reaction: pyruvate/2-

oxoglutarate + NAD
+
 + CoA  acetyl/succinylCoA + NADH. E3 (0.1 g) was used in

each well for consistent results unless otherwise mentioned in specific experiments. The 

reaction was initiated after 15 min of pre-incubation of the assay mixture at 37 
o
C (to

obtain a stable base line) by addition of the reconstituted complexes (total of 2 L, 0.67% 

of the total volume) and subsequent addition of CoA (5 L, 1.67% of the total volume). 

Five parallel experiments were carried out for most measurements. The molar extinction 

coefficient (for NADH was estimated under our experimental conditions and an = 

4,646 M
-1

cm
-1
(pH 7.3) and 4,856 M

-1
cm

-1
(pH 6.3) were calculated (an =

6,220 M
-1

cm
-1

 was reported in the literature [79]). To obtain a linear initial velocity

curve, 1 mM DTT (2 l) was added to the assay with human PDHc, however DTT was 

omitted from the superoxide detection assay because cytochrome c (cyt c) proved to be 

sensitive to DTT. 
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Superoxide Detection in the Physiological Direction. Superoxide generation by the 

reconstituted complexes was measured via reduction of partially acetylated cyt c, as 

described earlier [37, 80-83], with minor modifications. In the physiological direction the 

assay mixture has the same composition as for the NADH assay presented above, with 

the exception of the 200 L of assay volume containing 50 mM K2HPO4 (pH 6.3), 50 M 

cyt c [37, 80], calculated amounts from the reconstituted complexes (containing generally 

2 g of E3 component) and omitting NAD
+
,
 

according to the reaction scheme:

pyruvate/2-oxoglutarate + (ec/h)PDHc/OGDHc + Mg
2+

 + ThDP + CoA + O2 

superoxide (detected by cyt c). Superoxide detection was initiated by the addition of 2 

mM pyruvate or 2 mM 2-oxoglutarate (10 L, 5% of the volume) due to the higher 

volume (generally 40 L) of the protein complexes needed because of the low sensitivity 

of the cyt c assay. The initial reaction velocity was measured and converted to the amount 

of the superoxide generated per unit time per mg protein, taking into account a 1:1 

stoichiometry of the reaction between cyt c and superoxide [80]. 

Superoxide detection in the non-physiological reverse direction. In the reverse direction, 

solution conditions were the following in 200 l final reaction volume: 50 mM KH2PO4 

(pH 6.3), 50 M acetylated cyt c, 165 M NADH (3.3 L, 1.7% of the volume), 0.2 mM 

ThDP, 1 mM Mg
2+ 

and calculated amounts from the reconstituted complexes (containing

generally 2 g of E3 component), unless otherwise stated, according to the reaction 

scheme: NADH + (ec/h)PDHc/OGDHc + Mg
2+

 + ThDP + O2  superoxide (detected by

cyt c) . Pyruvate, 2-oxoglutarate and CoA were omitted from the reaction assay [8]. A 
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lower than physiological pH was applied in all experiments for superoxide detection due 

to the greatly enhanced ROS production by the complexes, especially in the reverse 

reaction, at pH<7.0; this condition also mimics acidosis that generally accompanies ROS 

production by the complexes under pathological conditions [27, 37, 51, 84]. 

Measurements were carried out at 37 
o
C at the absorbance maximum of 550 nm of the

reduced form of acetylated cyt c, similarly to that used in the physiological direction. The 

reaction was initiated by the addition of NADH after 15 min incubation at 37 
o
C. The

extinction coefficient of the reduced cytochrome c was determined by fully reducing 

oxidized cyt c under the assay conditions by sodium dithionite, providing an =10,172 

M
-1

cm
-1

. Superoxide dismutase from bovine erythrocytes (SOD) was used to verify that

cyt c reduction was indeed caused by superoxide generated by the enzymes; 100 U SOD 

were added to 200 L of reaction assay where applied. Five parallel experiments were 

carried out for most measurements. 

Statistics. Statistical differences were evaluated in Excel with two-tailed Student’s t-tests 

assuming unequal variances and were accepted to be significant when P < 0.05. 
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Results 

Superoxide production by E. coli pyruvate and 2-oxoglutarate dehydrogenase complexes.    

Superoxide production by E. coli PDHc and its components.  As displayed in Fig. 1, the 

assembled ecPDHc produces superoxide from pyruvate (forward physiological direction) 

with a rate of 41.4 nmol·min
-1

·mg E3
-1

.  In the presence of pyruvate, NAD
+
, CoA and all 

three components assembled into PDHc, the major products would be NADH and acetyl-

CoA (overall activity of NADH production of 20.7 units/mg E3 at 1:1:1 component mass 

ratio and of 34.7 units/mg E3 at 3.98:2.72:1 mass ratio was measured, Fig. S1; the latter 

mass ratio was calculated using a molar ratio of subunits and mass of subunits from the 

literature - see SI), and superoxide production could be considered as a side reaction 

(0.12% at 3.98:2.72:1 mass ratio of E1p:E2p:E3 components). As is also evident from 

Fig. 1, the E1p on its own and the corresponding E1p-E2p sub-complex do not produce 

any significant amount of superoxide, suggesting that E3 is responsible for superoxide 

production in both the forward and the reverse (non-physiological) reactions, as expected 

from earlier reports [7, 8, 27]. It is well accepted that E3 catalyzes the transfer of 

reducing equivalents from dihydrolipoamide (covalently amidated onto E2) to NAD
+
 in 

the physiological direction via FAD and a disulfide redox center on E3, resulting in 

lipoamide-E2 and NADH. In the reverse direction, NADH reduces FAD and the disulfide 

exchange site on E3 which with oxygen first leads to superoxide and then to H2O2 by 

dismutation of the former [48, 85]. Generation of radical species by flavoenzymes, 

including dihydrolipoamide dehydrogenase, is well-established [7, 8, 27, 37, 47-49, 86]. 

As expected, the E3 component by itself also produced superoxide [27, 37] in the reverse 

direction, as indeed could the assembled PDHc (Fig, 1, bars 2 and 4). This rules out the 
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need for E2p in ROS production, rather it implicates the two proximal cysteines in E3, 

known to undergo reversible oxidation-reduction and assisting in the formation of a redox 

couple with FAD, and FAD itself (see above). 

The activity of superoxide production by ecE3 (75.4 nmol·min
-1

·mg E3
-1

) and by

ecPDHc (62.0 nmol·min
-1

·mg E3
-1

) in the reverse reaction were of comparable

magnitudes, clearly indicating that E3 is the major source of superoxide production on 

the entire E. coli PDHc. It is also notable that the reactivity of superoxide generation by 

ecPDHc in the physiological direction of 41.4 nmol· min
-1

· mg E3
-1

 is much less than in

the reverse reaction (62.0 nmol· min
-1

· mg E3
-1

), and the difference could be due to the

different kinetics (and mechanisms) of superoxide generation by ecE3 in the two 

directions. 

       The novelty of this section is the first demonstration that E. coli PDHc could 

generate superoxide in both the physiological and the reverse non-physiological 

directions. In the physiological direction with pyruvate as substrate, superoxide 

generation represents 0.12 % of the NADH production.  The E3 component is the major 

source of superoxide generation by E. coli PDHc: neither the E1p component nor the 

E1p-E2p sub-complex alone generated detectable amounts of superoxide. 

Superoxide generation by E. coli 2-oxoglutarate dehydrogenase complex. Similarly to E. 

coli PDHc, the E. coli OGDHc generates superoxide in the physiological direction with a 

rate of 19.0 nmol·min
-1

·mg E3
-1

 when OGDHc was assembled at a mass ratio of either

2.07:0.86:1 or 2.07:1.72:1 (Fig. 2, also see Fig. S2 and SI). On comparison with ecPDHc 

(41.4 nmol· min
-1

· mg E3
-1

), ecOGDHc produces superoxide at one half the rate (19.0

nmol·min
-1

·mg E3
-1

) representing 0.58% of the rate of NADH production (3.26
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mol·min
-1

·mg E3
-1

). In the reverse direction, the activity of 44.7 nmol·min
-1

·mg E3
-1

(ecOGDHc at the 2.07:0.86:1 mass ratio) was comparable to the 62.0 nmol·min
-1

·mg E3
-1

by ecPDHc, and to the one by ecE3 (75.4 nmol·min
-1

·mg E3
-1

), again confirming that the

E3 component is responsible for superoxide production, a component that is common to 

both complexes. In vitro lipoylation gave an apparent reduction in superoxide formation 

by ecOGDHc in the forward direction, while increasing it in the reverse direction, an 

observation that needs further scrutiny. The rate of superoxide generation in the reverse 

reaction was significantly higher when measured with the putative complex of 

2.07:0.86:1 mass ratio (12:12:12 chain stoichiometry; bar 3 versus bar 7 in Fig. 2) which 

shows that the presence of excess E3 could indeed result in an increased superoxide 

generation with NADH (see Fig. 1); uncomplexed E3 can produce superoxide generally 

stronger than when in the complex [27]. 

Concluding about superoxide production by ecOGDHc: Superoxide is generated in the 

physiological direction. It was demonstrated by others that isolated ecE1o could generate 

hydrogen peroxide [52]. Also, formation of ThDP-enamine radical intermediate was 

demonstrated by EPR spectroscopy. It was suggested that one electron reduction of 

oxygen by the ThDP-enamine intermediate could lead to ThDP-enamine radical + 

superoxide [12, 52], indicating that the ThDP-enamine intermediates could undergo 

radical chemistry that is different from that carried out by the E3 component. However, 

under our experimental conditions no superoxide generation was detected for ecE1o on 

its own or for E1o-E2o sub-complex. Our results do not rule out that ecE1p or ecE1o 

could generate superoxide or H2O2, they probably reflect the fact that the colorimetric cyt 
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c assay possesses far less sensitivity compared to the Amplex assay (which is based on 

fluorimetric detection of hydrogen peroxide) used in Frank et al, 2008 [87]. 

Superoxide generation by human pyruvate and 2-oxoglutarate dehydrogenase complexes.   

Superoxide generation by hPDHc. It was demonstrated that hPDHc generates superoxide 

in the physiological direction with activity of 56.7 nmol· min
-1

 ·mg E3
-1

 that represents

about 0.15% of the overall hPDHc activity (37 mol ·min
-1

· mg E3
-1

) at a mass ratio of

hE1p:hE2p.E3BP:hE3 = 7.52:5.77:1 (Fig. 3 and SI). In the reverse direction with the 

same assembly of components, the superoxide activity of hPDHc was 108.3 nmol· min
-1

·

mg E3
-1

 and was similar to that of the isolated hE3 (96.1 nmol· min
-1

 ·mg E3
-1

) in the

reverse direction. The result is in agreement with data reported from the Adam-Vizi 

laboratory earlier [37]. The data above clearly indicate that hE3 assembled into hPDHc 

could produce superoxide with efficiency similar to that of the isolated hE3. Since no 

superoxide generation was detected with either hE1p or hE1p-hE2.E3BP sub-complex in 

the absence of hE3 (data not shown), the superoxide generation by hPDHc in the 

physiological direction could be attributed to hE3. 

Superoxide generation by isolated G194C hE3 was about two-fold higher than 

that for wt hE3 (191.6 nmol· min
-1

 ·mg E3
-1

, not shown in figure) and was in accordance

with data reported from the Adam-Vizi laboratory earlier [37]. Next, the G194C 

substituted hE3 was reconstituted with hE1p and hE2p.E3BP sub-complex. In the 

forward physiological direction this hPDHc displayed lower superoxide activity (Fig. 3) 

(42.5 nmol· min
-1

 ·mg E3
-1

) as compared with superoxide activity of 56.7 nmol· min
-1

·mg E3
-1

 detected for hPDHc reconstituted with wt E3 (compare bars 2 and 4 in Fig. 3).
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However, there was no statistically significant difference between the rates of superoxide 

production in the reverse direction (compare bars 3 and 5 in Fig. 3).  

The superoxide generating activity of the complex reconstituted with the G194C variant 

of hE3 measured in the reverse non-physiological direction was also similar in magnitude 

to that of the uncomplexed hE3 (bars 1 and 5 in Fig. 3).  

Superoxide generation by hOGDHc. On reconstitution of hOGDHc from hE1o, hE2o, 

and hE3 components with a mass ratio of 4.30:1.68:1, an overall NADH producing 

activity of 0.625 mol·min
-1

·mg E3
-1

 was detected at maximum efficiency (Fig. S4). 

Similarly to the E. coli complexes and to hPDHc, the hOGDHc was effective in 

generating superoxide with an activity of 12.1 nmol ·min
-1

 ·mg E3
-1 

in the forward 

physiological direction (1.9% of the overall OGDHc reaction of NADH production) and 

40.5 nmol· min
-1

· mg E3
-1

 in the reverse reaction (Fig. 4), again significantly higher than 

in the forward physiological direction (compare bars 2 and 1 in Fig. 4).            

What distinguishes hOGDHc from the other complexes discussed, is that the hE1o and 

hE1o-hE2o sub-complex, even in the absence of hE3, were still able to generate 

superoxide in the forward physiological direction with the following rates: 2.06 nmol· 

min
-1

 ·mg E1o
-1 

for hE1o on its own and 1.76 nmol· min
-1

 ·mg E1o
-1

 for the hE1o-hE2o 

sub-complex (bars 5 and 6 in Fig.4). The results suggest that hE2o may not contribute to 

superoxide generation. It had been suggested for porcine heart OGDHc [27, 88] that 

superoxide could also be generated by E2o via a thiyl radical in the absence of E3, but 

our results provide still no clear evidence for this [59].  

    As was reported by our groups, the ThDP-enamine radical could be detected by EPR 

using hE1o by itself, or hE1o assembled into hOGDHc. The concentration of ThDP-
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enamine radical was 0.9 M for hE1o (0.2% occupancy of active centers) and 1.3 M for 

hE1o assembled into hOGDHc (0.59% occupancy of active centers) [12]. The data here 

reported clearly demonstrate first the important difference between hOGDHc and 

hPDHc, and second between human and prokaryotic OGDHc complexes. The ThDP-

enamine radical is the likely source of superoxide on free hE1o, while ROS generation by 

the intact OGDHc was ascribed to the E3 component [7, 8]. Reconstitution of the human 

OGDHc with Gly194Cys substituted E3 (result of a pathogenic mutation) resulted in a 

statistically significant (21.5%) decrease in superoxide generation in the forward 

physiological direction (compare bar 3 versus bar 1 in Fig. 4), whereas in the reverse E3 

reaction a (statistically significant) 11.3% increase was observed upon this disease-

causing amino acid substitution (compare bars 4 and 2 in Fig. 4). 
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Discussion 

ROS generation by hOGDHc is heavily implicated in the progression of 

neurodegenerative diseases, such as Alzheimer’s and Parkinson’s disease, infantile lactic 

acidosis, and Friedreich’s ataxia, among others [5, 28, 32, 35, 36, 84, 89-92]. 

This is the first study to demonstrate that ecPDHc and ecOGDHc could produce 

superoxide. Given the similar observations made earlier with mammalian enzymes [7, 8, 

27], it can now be stated that 2-oxo acid dehydrogenase complexes, in general, possess 

the ability of ROS generation, in particular, under pathologically relevant conditions 

(acidosis, high NADH/NAD
+
 ratio and/or when the physiological e

-
-acceptor is absent or

present only at small concentrations). Given that E3 is likely the primary site for ROS 

production by the intact complexes [7, 8], and that ecE3 and hE3 show a high degree of 

sequence similarity (44% identity), this generalized concept always seemed reasonable, 

but had not been experimentally investigated or proven before. The results for the 

prokaryotic enzymes show that ecPDHc is just as much, if not more efficient as a 

superoxide producer as ecOGDHc in vitro. Obviously, substrate and cofactor availability 

under physiological or pathological conditions may modulate these catalytic efficiencies 

and their ratios in vivo [13]. We also found that both prokaryotic complexes generate 

more superoxide in the reverse than in the forward reactions, similarly to the eukaryotic 

enzymes, implying that the mechanisms are likely similar. Neither prokaryotic sub-

complexes (ecE1p/o, ecE1p/o-ecE2p/o) exhibited detectable superoxide generating 

activity under our assay conditions, which, in the case of ecOGDHc is a marked 

difference relative to the eukaryotic enzyme. The fact that the prokaryotic 2-oxo acid 

dehydrogenase complexes are also able to generate ROS implies that this feature 
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remained an inherent property of these enzymes throughout evolution. This highly 

conserved mechanism may have similar implications in prokaryotes to the ones in 

eukaryotes, such as self-regulation (e.g., for metabolic enzymes such as OGDHc [88]), 

signal transduction (e.g., regulation by transcription factors [36, 89, 93]), or defense (e.g., 

by cytotoxic lymphocytes in mammals [94]). Obviously, over-production of ROS may 

lead to cellular damage in any organism or tissue [28-30, 36, 95].  

In the human brain, the activity of OGDHc is a rate-limiting step in the Krebs 

cycle [1, 2, 4, 5, 76, 96] and the activity of hPDHc was found to be five-fold higher than 

that of hOGDHc [97]. This ratio was ~3 (mitochondrion) or ~7 (intact cell) in fibroblasts 

and ~1.5 (mitochondrion) or ~15 (intact cell) in leukocytes [98]. In alamethicin 

permeabilized rat brain mitochondria the activities of the two enzymes were nearly 

identical [7]. Measurements with the reconstituted human enzymes in our study 

demonstrate that hPDHc (37 unit/mg E3) was ~59 times more active than hOGDHc 

(0.625 unit/mg E3). Superoxide activity in the forward reaction was ~ 5-fold higher for 

hPDHc than hOGDHc, whereas in the reverse reaction hPDHc generated superoxide at a 

~2.5-fold higher rate as compared to hOGDHc when this activity was calculated for the 

unit amount of their common E3 subunit. The higher physiological activity of hPDHc 

(relative to that of hOGDHc) is in accord with literature data (see above). The higher 

(both forward and reverse reactions) superoxide generating capacities of hPDHc relative 

to those of hOGDHc also applies to the prokaryotic complexes in this study, but not to 

the isolated porcine equivalents studied earlier [7, 8], which Sigma preparations however 

proved to be of questionable purities in our hands. In a broader sense, we propose that 

potentially all 2-oxo acid dehydrogenase complexes should be considered as potent ROS 
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generating enzymes, although in vivo conditions and their transcriptionally/translationally 

determined total amounts may considerably modulate their efficiency to contribute to the 

gross ROS production of mitochondria or cells [13].   

Complex I isolated from bovine heart mitochondria produced 42.1 nmol.min
-1

.mg
-

1
 superoxide in a NADH supported ROS generation assay [99]. Succinate dehydrogenase 

(Complex II) was also tested in vitro in bovine heart submitochondrial particles where 

~10 nmol.min
-1

.mg
-1

 activity was found in an H2O2 detection assay [100, 101]. Another

isolated ROS producer, the membrane-bound dihydroorotate dehydrogenase purified 

from rat liver mitochondria was also assessed, but the ROS producing activity was not 

clearly quantified [102]. The above reported values for isolated ROS producing enzymes 

show a similar order of magnitude when compared to the ROS production rates exhibited 

by hPDHc or hOGDHc in this study. Rigorous quantitative comparison of literature 

values of other ROS producing sites to the values reported here for hPDHc or hOGDHc 

is difficult to obtain due to considerable differences in the applied assay conditions; 

comparison or projection of in situ/in vivo results to in vitro data (measured with purified 

proteins) and vice versa is also heavily error prone [103]. A recent more reliable 

comparison for in vivo relevance of in situ ROS production rates displayed by Complex I, 

PDHc and OGDHc in isolated rat skeletal muscle mitochondria showed that 

superoxide/H2O2 was produced by the OGDHc at a two-fold higher rate than PDHc, and 

at eight-fold rate compared to site IF of Complex I [13]. The in vivo or in situ capacities, 

under selected experimental conditions, of the various ROS producing sites revealed so 

far have been thoroughly documented, partly by our laboratory [91, 104-110], and 

recently reviewed in [103]. 
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The fact that the uncomplexed hE1o, as well as the hE1o-hE2o sub-complex 

could generate superoxide in the forward reaction comparable to that generated by 

hOGDHc, is of particular interest. This is a marked difference from what we found with 

the other three complexes, which exhibited no measurable superoxide generation when 

lacking the respective E2/E3 or just the E3 components. Plausible mechanistic 

explanation for the above observation concerning hE1o were suggested in our recent 

study [12], suggesting differences in the stabilities of respective ThDP-bound post-

decarboxylation catalytic intermediates on hOGDHc and hPDHc (Scheme 1). ROS 

(superoxide and H2O2) generation by hE1o, first reported recently [12], might have 

pathological relevance under conditions where the stoichiometric assembly of the 

hOGDHc is compromised and hE1o is present in excess inside mitochondria [21, 111-

115]. Earlier, it was concluded that for ROS generation by the mammalian OGDHc, the 

E3 component was solely responsible [7, 8]. As the E1o-E2o subcomplex is far more 

stable than the (E1o-E2o)-E3 complex for OGDHc [54-56], the above condition may 

result from genetic deficiencies of hE2o (for further discussion, see [12]). ROS 

generation by the hE1o-hE2o subcomplex may have potential relevance (under certain 

pathological conditions), as E3 binds ~30 times less tightly to OGDHc than to PDHc [54-

56], and this may be more pronounced in acidosis [27]. We propose that in acidosis, 

uncomplexed E3 in the reverse reaction, as well as the E1o-E2o subcomplex in the 

forward reaction might generate ROS, provided that sufficiently high concentrations of 

NADH or OG, respectively are available. This new mechanistic view may be worth 

considering in targeting ROS generation by OGDHc, but additional investigations are 

needed to further characterize ROS generation by this subcomplex. Scheme 1 provides a 
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summary of the known sites of superoxide generation on the hOGDHc subcomplexes and 

the fully assembled 2-oxoacid dehydrogenase complexes in general according to the 

current literature [12, 47, 48, 85]. 

Since the G194C pathogenic amino acid substitution of hE3 [116-118] is usually 

accompanied by lactic acidosis, it was important to address the activity of hPDHc with 

this substitution at pH 6.3. This pathogenic substitution led to an 87% decrease in the 

overall assay (see SI and Fig. S3, bars 4 and 7), in good agreement with the 80-90% loss 

of hPDHc activity found in patients with either heterozygote or homozygote mutations 

[84, 116, 118]. The activity of hOGDHc similarly diminishes under conditions in vitro 

when the complex is reconstituted with the G194C hE3 (SI Fig. S4). It is also important 

to emphasize that the isolated hE3 G194C did not display significant loss of activity 

either in the forward or the reverse reaction, but showed a significantly enhanced 

superoxide generation in the reverse reaction [37]. An elucidation of the mechanism by 

which hE3 with the G194C substitution decreases the overall PDHc and OGDHc 

activities will be the subject of further investigations. There are a few pathogenic 

mutations of hE3 that impede the recruitment of hE3 to hE3BP (in hPDHc) [119]; this 

may also occur with hE3 G194C thus offering a plausible explanation for the above 

findings. It is noteworthy that the presence of hE3 G194C lowered superoxide generation 

in the forward direction for both complexes to a similar extent (~20%), pointing to a 

potentially similar mechanism. In the reverse reaction it did not alter superoxide 

generation by hPDHc, whereas it significantly (~11%) increased superoxide production 

by hOGDHc; the augmented ROS production by hOGDHc containing hE3 G194C may 

also contribute to the cellular/tissue damage associated with this mutation. These results 
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complement a previous report on isolated hE3 G194C [37], which showed significantly 

enhanced (>70%) ROS generation due to this substitution. 

It is clear from the present results that the G194C hE3 substitution substantially 

reduces, by a hitherto unelucidated mechanism, primarily the activity of PDHc, but also 

that of OGDHc, while its own catalytic activity is essentially unchanged [37], and results 

in an excess ROS generation in the reverse reaction by hOGDHc. However, hE3 G194C 

generates ROS at an even higher rate when it is present uncomplexed [27, 57, 58]. 

The present findings add to our understanding of the molecular pathology of 2-

oxo acid dehydrogenase complexes in general, and to that of hPDHc and hOGDHc in 

particular, with both complexes being potentially involved in the mechanisms of 

neurodegenerative diseases. 
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Legends to figures 

Figure 1. ROS generation by reconstituted ecPDHc under different conditions. ROS 

production is expressed as nmol superoxide generated /min/mg of E3 (or E1 for the last 

two columns). Linear fitting to initial velocity data points generated always an R
2
>0.96. 

The primary data were corrected with the average slopes of the blanks. Error bars 

represent S.E.M. values for three parallel measurements. Statistically significant 

differences relative to bar 2 are labeled by asterisks (*) (p<0.05). Specific conditions are 

indicated under the charts; Forward direction F: superoxide generation by reconstituted 

complexes in the physiological direction by substrates pyruvate or 2-oxoglutarate in the reaction 

mixture used for overall activity measurement (see Materials and Methods), but omitting NAD
+
: 

pyruvate/2-oxoglutarate + (ec/h)PDHc/OGDHc + Mg
2+

 + ThDP + CoA + O2  superoxide 

(detected by cyt c), Reverse direction R:  superoxide generation by reconstituted complexes in the 

non-physiological direction using NADH as a substrate, but in the absence of pyruvate or 2-

oxoglutarate and CoA: NADH + (ec/h)PDHc/OGDHc + Mg
2+

 + ThDP + O2  superoxide 

(detected by cyt c). Other conditions were as detailed in Materials and Methods. pH for 

superoxide production was 6.3 in all the cases except for measurements with ecPDHc 

(pH=6.555). For ecPDHc the 3.98:2.72:1 mass ratio was applied for ROS measurement. 

For ecE1p-ecE2p and ecE1p the same amount of ecE1p and ecE2p were present as for 

the experiments with ecPDHc.  

 

Figure 2. ROS generation by reconstituted ecOGDHc under different conditions. 

Superoxide production is expressed as for Fig.1. Linear fitting to initial velocity data 

points generated always an R
2
>0.92. The primary data were corrected with the average 
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slopes of the blanks. Error bars represent S.E.M. values for five parallel measurements. 

Statistically significant differences relative to bar 1 are labeled by single asterisks (*) 

(p<0.05); multiple asterisks label conditions in pairs of particular interest with significant 

differences to one another (bar 3 to bar 4, bar 5 to bar 6, and bar 7 to bar 8 show 

significant differences). Conditions are described under the charts. For definitions of F and 

R see figure legend 1. The signs - or + lipoylation mean partially or fully lipoylated lipoyl 

domains of the E2 components. Other conditions were the same as detailed in Materials and 

Methods. pH was 6.741 in all experiments except for those labeled with 
#
 where the pH

was 6.598. 

Figure 3. Superoxide generation by reconstituted hPDHc under different conditions. 

Superoxide production is expressed as for Fig.1. Linear fitting to initial velocity data 

points generated always an R
2
>0.949. The primary data were corrected with the average

slopes of the blanks. Error bars represent S.E.M. values for five parallel measurements. A 

significant difference exists between bars 2 and 4 (**) (p<0.05). Conditions are described 

under the charts; other conditions were as detailed in Materials and Methods. For 

definitions of F and R see figure legend 1. The pH was 6.598 in all experiments except for 

that labeled with 
#
 where the pH was 6.576 and for uncomplexed hE3 where the pH was

6.300. hPDHc with the 7.52:5.77:1 mass ratio was measured in these experiments. hE3-

G194C presented with a 99.4% higher rate of ROS generation relative to hE3 (bar 1) 

(data not shown). 
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Figure 4. ROS generation by reconstituted hOGDHc under different conditions. 

Superoxide production is expressed as for Fig.1. Activities are calculated for the mg 

amounts of the hE3 component except for bars 5 and 6 (labeled with 
#
), where the

calculation was made for the amount of hE1o. Linear fitting to initial velocity data points 

generated always an R
2
>0.982. The primary data were corrected with the average slopes

of the blanks. Error bars represent S.E.M. values for five parallel measurements. 

Statistically significant differences relative to bar 1 are labeled by single asterisks (*); a 

significant difference exists also between bars 2 and 4 (**) (p<0.05). Conditions are 

designated under the charts; other conditions were the same as detailed in Materials and 

Methods. For definitions of F and R see figure legend 1. In these experiments hOGDHc was 

reconstituted with the 4.3:1.68:1 mass ratio and the pH was 6.598. For hE1o-hE2o and 

hE1o the same amount of hE1o and hE2o were present as for the experiments with 

hOGDHc. 

Figure S1. Overall PDHc activity of reconstituted ecPDHc under different 

conditions. Overall activity (NADH production) was measured for the complexes reconstituted 

from their individually expressed E1, E2, E3 components with the indicated mass ratios. Mass 

ratios (E1:E2:E3) were: a. 1:1:1; b. 3.98:2.72:1.0 according to the reaction: pyruvate + NAD
+
 + 

CoA  acetylCoA + NADH. The signs - or + lipoylation means partially or fully lipoylated 

lipoyl domains of the E2 components. Reaction was measured at c, pH 7.3 or d, pH 6.3. Overall 

PDHc activity is expressed as mol NADH/min/mg of the E3 component. Linear fitting 

to initial velocity data points generated always an R
2
>0.97. The primary data were

corrected with the average slopes of the blanks. Error bars represent S.E.M. values for 
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five parallel measurements. Statistically significant differences relative to bar 1 are 

labeled by asterisks (*) (p<0.05). See conditions detailed in Materials and Methods. 

Figure S2. Overall OGDHc activity of reconstituted ecOGDHc under different 

conditions. Overall activity (NADH production) was measured for the complexes reconstituted 

from their individually expressed E1, E2, E3 components with the indicated mass ratios. Mass 

ratios (E1:E2:E3) were: a. 1:1:1; b. 2.07:0.86:1.0; c. 2.07:1.72:1.0 according to the reaction:  

2-oxoglutarate + NAD
+
 + CoA  succinylCoA + NADH. Overall OGDHc activity is 

expressed as for Fig.S1. Linear fitting to initial velocity data points generated always an 

R
2
>0.96. The primary data were corrected with the average slopes of the blanks. Error

bars represent S.E.M. values for five parallel measurements. Definitions are described 

under legend to Figure S1; other conditions were the same as detailed in Materials and 

Methods. 

Figure S3. Overall PDHc activity of reconstituted hPDHc under different 

conditions. Overall PDHc activity is expressed as for Fig.S1. Linear fitting to initial 

velocity data points generated always an R
2
>0.992. The primary data were corrected with

the average slopes of the blanks. Error bars represent S.E.M. values for five parallel 

measurements. Statistically significant differences relative to bar 1 are labeled by single 

asterisks (*) (p<0.05). Further comparisons of particular interest were also performed: 

significant differences also exist for bar 3 to bar 4 (**), for bar 4 to bars 5, 6 & 7 (***; 

but not to bar 8), and for bar 5 to bar 7 (****). Definitions are described in legend to 

Figure S1; other conditions were the same as detailed in Materials and Methods. 
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Figure S4. Overall OGDHc activity of reconstituted hOGDHc under different 

conditions. Overall OGDHc activity is expressed as for Fig.S1. Linear fitting to initial 

velocity data points generated always an R
2
>0.991. The primary data were corrected with

the average slopes of the blanks. Error bars represent S.E.M. values for five parallel 

measurements. Statistically significant differences relative to bar 1 (calculated only for 

bars 2 or 3) are labeled by single asterisks (*); further comparisons of particular interest 

were also performed: significant differences also exist for bar 3 to bars 4, 5, 8 & 9 (**; 

but not to bars 6, 7, 10 & 11) and for bar 5 to bar 9 (***) (p<0.05). Definitions are 

described under legend to Figure S2; other conditions were the same as detailed in 

Materials and Methods. Ca
2+

 was applied in 20 M or 60 M concentrations whereas

ADP in 0.4 mM or 1.2 mM concentrations, as indicated. 

Scheme 1. Known sites of superoxide generation on the hOGDHc subcomplexes and 

the fully assembled 2-oxoacid dehydrogenase complexes in general. 
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Table 1. Activities of the E. coli and human PDHc and OGDHc and their components at 

optimal stoichiometry. 

Enzyme Overall complex 

activity 

(mol ·min
-1

· mg E3
-1

)

Superoxide  activity 

(forward) 

mol ·min
-1

· mg E3
-1

)

Superoxide activity 

(reverse) 

mol ·min
-1

· mg E3
-1

)

hPDHc 37.0 ± 1.1 0.057 ± 0.001 0.108 ± 0.001 

hE3 _ _ 0.096 ± 0.003 

hOGDHc 0.625 ± 0.005 0.012 ± 0.000 0.040 ± 0.001 

hE1o _ 0.0021 ± 0.0001 

mol ·min
-1

· mg E1o
-1

) 

_ 

ecPDHc 34.7 ± 2.2 0.041 ± 0.004 0.062 ± 0.003 

ecE3 _ _ 0.075 ± 0.007 

ecOGDHc 3.71 ± 0.10 0.019 ± 0.001 0.045 ± 0.000 

Table 1
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