16 research outputs found
Superorganisms of the protist kingdom : a new level of biological organization
The concept of superorganism has a mixed reputation in biology-for some it is a convenient way of discussing supra-organismal levels of organization, and for others, little more than a poetic metaphor. Here, I show that a considerable step forward in the understanding of superorganisms results from a thorough review of the supra-organismal levels of organization now known to exist among the “unicellular” protists. Limiting the discussion to protists has enormous advantages: their bodies are very well studied and relatively simple (as compared to humans or termites, two standard examples in most discussions about superorganisms), and they exhibit an enormous diversity of anatomies and lifestyles. This allows for unprecedented resolution in describing forms of supra-organismal organization. Here, four criteria are used to differentiate loose, incidental associations of hosts with their microbiota from “actual” superorganisms: (1) obligatory character, (2) specific spatial localization of microbiota, (3) presence of attachment structures and (4) signs of co-evolution in phylogenetic analyses. Three groups-that have never before been described in the philosophical literature-merit special attention: Symbiontida (also called Postgaardea), Oxymonadida and Parabasalia. Specifically, it is argued that in certain cases-for Bihospites bacati and Calkinsia aureus (symbiontids), Streblomastix strix (an oxymonad), Joenia annectens and Mixotricha paradoxa (parabasalids) and Kentrophoros (a ciliate)-it is fully appropriate to describe the whole protist-microbiota assocation as a single organism (“superorganism”) and its elements as “tissues” or, arguably, even “organs”. To account for this level of biological complexity, I propose the term “structured superorganism”
On the origin of Fe/S cluster biosynthesis in eukaryotes
Iron and sulfur are indispensable elements of every living cell, but on their own these elements are toxic and require dedicated machineries for the formation of Fe/S clusters. In eukaryotes, proteins requiring Fe/S clusters (Fe/S proteins) are found in or associated with various organelles including the mitochondrion, endoplasmic reticulum, cytosol and the nucleus. These proteins are involved in several pathways indispensable for the viability of each living cell including DNA maintenance, protein translation and metabolic pathways. Thus, the formation of Fe/S clusters and their delivery to these proteins has a fundamental role in the functions and the evolution of the eukaryotic cell. Currently, most eukaryotes harbor two (located in cytosol and mitochondrion) or three (located in plastid) machineries for the assembly of Fe/S clusters, but certain anaerobic microbial eukaryotes contain Sulfur Mobilization (SUF) machineries that were previously thought to be present only in archaeal linages. These machineries could not only stipulate which pathway was present in the last eukaryotic common ancestor (LECA), but they could also provide clues regarding presence of an Fe/S cluster machinery in the proto-eukaryote and evolution of Fe/S cluster assembly machineries in all eukaryotes
Genomika a buněčná biologie oxymonád
Oxymonády představují skupinu opomíjených protist žijících jako střevní endosymbionti hmyzu a obratlovců. V této práci jsem se zaměřil na studium fylogeneze, genomiky a buněčné biologie vybraných oxymonád. V rámci práce jsme poodhalili skrytou rozmanitost kultivovatelných malých oxymonád z různých hostitelů, popsali jeden nový rod a šest nových druhů. U Monocercomonoides exilis, jediné oxymonády s publikovaným genomem, jsme zkoumali organizaci genomu pomocí fluorescenční in situ hybridizace (FISH) proti telomerickým oblastem a jednokopiovým genům. Naše výsledky ukazují, že genom je s největší pravděpodobností organizován do 6-7 chromozomů. Funkční anotace genů odhalila, že replikace a opravy DNA v M. exilis probíhají kanonickými způsoby a sady enzymů, které se jich účastní, jsou bohatší než u jiných metamonád, jejichž genomy jsou k dispozici. Přestože M. exilis postrádá stopy po mitochondrii, anotace velké části genomu ukázala, že jeho ostatní buněčné systémy se od ostatních eukaryot zásadně neliší. Naše fylogenetické analýzy ukázaly, že rod Monocercomonoides je blízce příbuzný rodu Streblomastix, který se nachází výhradně ve střevech termitů. Streblomastix strix je, na rozdíl od M. exilis, vysoce adaptován k symbióze s povrchovými bakteriemi. Protože S. strix nelze kultivovat in vitro, použili...Oxymonads are a group of poorly studied protists living as intestinal endosymbionts in the gut of insects and vertebrates. In this thesis I focused on the study of phylogeny, genomics and cell biology of oxymonads. Using culture-based approaches, we uncovered the hidden diversity of small oxymonads and described one new genus and six new species. In Monocercomonoides exilis, the only oxymonad with a published genome, we investigated the genome organization using fluorescence in situ hybdridization (FISH) against the telomeric regions and single-copy genes. Our results show that the genome is most probably haploid being organized in 6-7 chromosomes. Annotation of the genome revealed that the DNA replication and repair mechanisms in M. exilis are canonical and they seem more complete than those of other metamonads whose genomes are available. Although M. exilis lacks in any traces of mitochondria, its genome annotation revealed that other cellular systems do not markedly differ from other eukaryotes. Our taxon-rich phylogenetic analyses suggested that the genus Monocercomonoides is closely related to the oxymonad Streblomastix strix, which is found exclusively in the gut of the termites. Streblomastix strix, as opposed to M. exilis, is highly adapted to harbour bacterial ectosymbionts. Since S. strix...Katedra parazitologieDepartment of ParasitologyPřírodovědecká fakultaFaculty of Scienc
Genomics and cell biology of oxymonads
Oxymonads are a group of poorly studied protists living as intestinal endosymbionts in the gut of insects and vertebrates. In this thesis I focused on the study of phylogeny, genomics and cell biology of oxymonads. Using culture-based approaches, we uncovered the hidden diversity of small oxymonads and described one new genus and six new species. In Monocercomonoides exilis, the only oxymonad with a published genome, we investigated the genome organization using fluorescence in situ hybdridization (FISH) against the telomeric regions and single-copy genes. Our results show that the genome is most probably haploid being organized in 6-7 chromosomes. Annotation of the genome revealed that the DNA replication and repair mechanisms in M. exilis are canonical and they seem more complete than those of other metamonads whose genomes are available. Although M. exilis lacks in any traces of mitochondria, its genome annotation revealed that other cellular systems do not markedly differ from other eukaryotes. Our taxon-rich phylogenetic analyses suggested that the genus Monocercomonoides is closely related to the oxymonad Streblomastix strix, which is found exclusively in the gut of the termites. Streblomastix strix, as opposed to M. exilis, is highly adapted to harbour bacterial ectosymbionts. Since S. strix..
A new lineage of non-photosynthetic green algae with extreme organellar genomes
Background
The plastid genomes of the green algal order Chlamydomonadales tend to expand their non-coding regions, but this phenomenon is poorly understood. Here we shed new light on organellar genome evolution in Chlamydomonadales by studying a previously unknown non-photosynthetic lineage. We established cultures of two new Polytoma-like flagellates, defined their basic characteristics and phylogenetic position, and obtained complete organellar genome sequences and a transcriptome assembly for one of them.
Results
We discovered a novel deeply diverged chlamydomonadalean lineage that has no close photosynthetic relatives and represents an independent case of photosynthesis loss. To accommodate these organisms, we establish the new genus Leontynka, with two species (L. pallida and L. elongata) distinguishable through both their morphological and molecular characteristics. Notable features of the colourless plastid of L. pallida deduced from the plastid genome (plastome) sequence and transcriptome assembly include the retention of ATP synthase, thylakoid-associated proteins, the carotenoid biosynthesis pathway, and a plastoquinone-based electron transport chain, the latter two modules having an obvious functional link to the eyespot present in Leontynka. Most strikingly, the ~362 kbp plastome of L. pallida is by far the largest among the non-photosynthetic eukaryotes investigated to date due to an extreme proliferation of sequence repeats. These repeats are also present in coding sequences, with one repeat type found in the exons of 11 out of 34 protein-coding genes, with up to 36 copies per gene, thus affecting the encoded proteins. The mitochondrial genome of L. pallida is likewise exceptionally large, with its >104 kbp surpassed only by the mitogenome of Haematococcus lacustris among all members of Chlamydomonadales hitherto studied. It is also bloated with repeats, though entirely different from those in the L. pallida plastome, which contrasts with the situation in H. lacustris where both the organellar genomes have accumulated related repeats. Furthermore, the L. pallida mitogenome exhibits an extremely high GC content in both coding and non-coding regions and, strikingly, a high number of predicted G-quadruplexes.
Conclusions
With its unprecedented combination of plastid and mitochondrial genome characteristics, Leontynka pushes the frontiers of organellar genome diversity and is an interesting model for studying organellar genome evolution.Science, Faculty ofNon UBCBotany, Department ofReviewedFacultyResearche
Characterization of the SUF FeS cluster synthesis machinery in the amitochondriate eukaryote Monocercomonoides exilis
International audienc
Genomics of Preaxostyla Flagellates Illuminates the Path Towards the Loss of Mitochondria.
The notion that mitochondria cannot be lost was shattered with the report of an oxymonad Monocercomonoides exilis, the first eukaryote arguably without any mitochondrion. Yet, questions remain about whether this extends beyond the single species and how this transition took place. The Oxymonadida is a group of gut endobionts taxonomically housed in the Preaxostyla which also contains free-living flagellates of the genera Trimastix and Paratrimastix. The latter two taxa harbour conspicuous mitochondrion-related organelles (MROs). Here we report high-quality genome and transcriptome assemblies of two Preaxostyla representatives, the free-living Paratrimastix pyriformis and the oxymonad Blattamonas nauphoetae. We performed thorough comparisons among all available genomic and transcriptomic data of Preaxostyla to further decipher the evolutionary changes towards amitochondriality, endobiosis, and unstacked Golgi. Our results provide insights into the metabolic and endomembrane evolution, but most strikingly the data confirm the complete loss of mitochondria for all three oxymonad species investigated (M. exilis, B. nauphoetae, and Streblomastix strix), suggesting the amitochondriate status is common to a large part if not the whole group of Oxymonadida. This observation moves this unique loss to 100 MYA when oxymonad lineage diversified
The Oxymonad Genome Displays Canonical Eukaryotic Complexity in the Absence of a Mitochondrion
The discovery that the protist Monocercomonoides exilis completely lacks mitochondria demonstrates that these organelles are not absolutely essential to eukaryotic cells. However, the degree to which the metabolism and cellular systems of this organism have adapted to the loss of mitochondria is unknown. Here, we report an extensive analysis of the M. exilis genome to address this question. Unexpectedly, we find that M. exilis genome structure and content is similar in complexity to other eukaryotes and less "reduced" than genomes of some other protists from the Metamonada group to which it belongs. Furthermore, the predicted cytoskeletal systems, the organization of endomembrane systems, and biosynthetic pathways also display canonical eukaryotic complexity. The only apparent preadaptation that permitted the loss of mitochondria was the acquisition of the SUF system for Fe-S cluster assembly and the loss of glycine cleavage system. Changes in other systems, including in amino acid metabolism and oxidative stress response, were coincident with the loss of mitochondria but are likely adaptations to the microaerophilic and endobiotic niche rather than the mitochondrial loss per se. Apart from the lack of mitochondria and peroxisomes, we show that M. exilis is a fully elaborated eukaryotic cell that is a promising model system in which eukaryotic cell biology can be investigated in the absence of mitochondria