66 research outputs found

    Tracking the Lifecycle of a 21700 Cell: A 4D Tomography and Digital Disassembly Study

    Get PDF
    Extending the lifetime of commercial Li-ion cells is among the most important challenges to facilitate the continued electrification of transport as demonstrated by the substantial volume of literature dedicated to identifying degradation mechanisms in batteries. Here, we conduct a long-term study on a cylindrical Li-ion cell, tracking the evolution of the structure of the cell using X-ray computed tomography. By evaluating the internal geometry of the cell over several hundreds of cycles we show a causal relationship between changes in the electrode structure and the capacity fade associated with cell aging. The rapid aging which occurs as cells reach their end-of-life condition is mirrored in a significant acceleration in internal architecture changes. This work also shows the importance of consistent and accurate manufacturing processes with small defects in the jelly-roll being shown to act as nucleation sites for the structural degradation and by extension capacity fade

    Spring Thaw Ionic Pulses Boost Nutrient Availability and Microbial Growth in Entombed Antarctic Dry Valley Cryoconite Holes

    Get PDF
    The seasonal melting of ice entombed cryoconite holes on McMurdo Dry Valley glaciers provides oases for life in the harsh environmental conditions of the polar desert where surface air temperatures only occasionally exceed 0°C during the Austral summer. Here we follow temporal changes in cryoconite hole biogeochemistry on Canada Glacier from fully frozen conditions through the initial stages of spring thaw toward fully melted holes. The cryoconite holes had a mean isolation age from the glacial drainage system of 3.4 years, with an increasing mass of aqueous nutrients (dissolved organic carbon, total nitrogen, total phosphorus) with longer isolation age. During the initial melt there was a mean nine times enrichment in dissolved chloride relative to mean concentrations of the initial frozen holes indicative of an ionic pulse, with similar mean nine times enrichments in nitrite, ammonium, and dissolved organic matter. Nitrate was enriched twelve times and dissolved organic nitrogen six times, suggesting net nitrification, while lower enrichments for dissolved organic phosphorus and phosphate were consistent with net microbial phosphorus uptake. Rates of bacterial production were significantly elevated during the ionic pulse, likely due to the increased nutrient availability. There was no concomitant increase in photosynthesis rates, with a net depletion of dissolved inorganic carbon suggesting inorganic carbon limitation. Potential nitrogen fixation was detected in fully melted holes where it could be an important source of nitrogen to support microbial growth, but not during the ionic pulse where nitrogen availability was higher. This study demonstrates that ionic pulses significantly alter the timing and magnitude of microbial activity within entombed cryoconite holes, and adds credence to hypotheses that ionic enrichments during freeze-thaw can elevate rates of microbial growth and activity in other icy habitats, such as ice veins and subglacial regelation zones

    Recent advances in acoustic diagnostics for electrochemical power systems

    Get PDF
    Acknowledgments The authors would like to gratefully acknowledge the EPSRC for supporting the electrochemical research in the Electrochemical Innovation Lab (EP/R020973/1; EP/R023581/1; EP/N032888/1; EP/R023581/1; EP/P009050/1; EP/M014371/1; EP/M009394; EP/L015749/1; EP/K038656/1) and Innovate UK for funding the VALUABLE project (Grant No. 104182). The authors would also like to acknowledge the Royal Academy of Engineering for funding Robinson and Shearing through ICRF1718\1\34 and CiET1718 respectively and the Faraday Institution (EP/S00353/1, Grant Nos. FIRG003, FIRG014). The authors also acknowledge the STFC for supporting Shearing and Brett (ST/K00171X/1) and ACEA for supporting ongoing research at the EIL. Support from the National Measurement System of the UK Department for Business, Energy and Industrial Strategy is also gratefully acknowledged.Peer reviewedPublisher PD

    Mass transfer in fibrous media with varying anisotropy for flow battery electrodes: Direct numerical simulations with 3D X-ray computed tomography

    Get PDF
    The final publication is available at Elsevier via https://doi.org/10.1016/j.ces.2018.10.049. © 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/A numerical method for calculating the mass transfer coefficient in fibrous media is presented. First, pressure driven flow was modelled using the Lattice Boltzmann Method. The advection-diffusion equation was solved for convective-reacting porous media flow, and the method is contrasted with experimental methods such as the limiting current diffusion technique, for its ability to determine and simulate mass transfer systems that are operating at low Reynolds number flows. A series of simulations were performed on three materials; specifically, commercially available carbon felts, electrospun carbon fibers and electrospun carbon fibers with anisotropy introduced to the microstructure. Simulations were performed in each principal direction (x,y,z) for each material in order to determine the effects of anisotropy on the mass transfer coefficient. In addition, the simulations spanned multiple Reynolds and Péclet numbers, to fully represent highly advective and highly diffusive systems. The resulting mass transfer coefficients were compared with values predicted by common correlations and a good agreement was found at high Reynolds numbers, but less so at lower Reynolds number typical of cell operation, reinforcing the utility of the numerical approach. Dimensionless mass transfer correlations were determined for each material and each direction in terms of the Sherwood number. These correlations were analyzed with respect to each materials’ permeability tensor. It was found that as the permeability of the system increases, the expected mass transfer coefficient decreases. Two general mass transfer correlations are presented, one correlation for isotropic fibrous media and the other for through-plane flow in planar fibrous materials such as electrospun media and carbon paper. The correlations are Sh = 0.879 Re0.402 Sc0.390 and Sh = 0.906 Re0.432 Sc0.432 respectively.The authors acknowledge support from the EPSRC under grants EP/L014289/1 and EP/N032888/1, as well as the STFC Extended Network in Batteries and Electrochemical Energy Devices (ST/N002385/1) for funding of travel for Rhodri Jervis to Canada. Paul R Shearing acknowledges the support of the Royal Academy of Engineering. This work was supported by the Natural Science and Engineering Research Council (NSERC) of Canada. MDR Kok is grateful to the Eugenie Ulmer Lamothe Endowment as well as the Vadasz Family Doctoral Fellowship for funding his work, as well the McGill University’s Graduate Mobility Award for funding his travel to the UK

    Glacier algae accelerate melt rates on the south-western Greenland Ice Sheet

    Get PDF
    Melting of the Greenland Ice Sheet (GrIS) is the largest single contributor to eustatic sea level and is amplified by the growth of pigmented algae on the ice surface, which increases solar radiation absorption. This biological albedo-reducing effect and its impact upon sea level rise has not previously been quantified. Here, we combine field spectroscopy with a radiative-transfer model, supervised classification of unmanned aerial vehicle (UAV) and satellite remote-sensing data, and runoff modelling to calculate biologically driven ice surface ablation. We demonstrate that algal growth led to an additional 4.4–6.0 Gt of runoff from bare ice in the south-western sector of the GrIS in summer 2017, representing 10 %–13 % of the total. In localized patches with high biomass accumulation, algae accelerated melting by up to 26.15±3.77 % (standard error, SE). The year 2017 was a high-albedo year, so we also extended our analysis to the particularly low-albedo 2016 melt season. The runoff from the south-western bare-ice zone attributed to algae was much higher in 2016 at 8.8–12.2 Gt, although the proportion of the total runoff contributed by algae was similar at 9 %–13 %. Across a 10 000 km2 area around our field site, algae covered similar proportions of the exposed bare ice zone in both years (57.99 % in 2016 and 58.89 % in 2017), but more of the algal ice was classed as “high biomass” in 2016 (8.35 %) than 2017 (2.54 %). This interannual comparison demonstrates a positive feedback where more widespread, higher-biomass algal blooms are expected to form in high-melt years where the winter snowpack retreats further and earlier, providing a larger area for bloom development and also enhancing the provision of nutrients and liquid water liberated from melting ice. Our analysis confirms the importance of this biological albedo feedback and that its omission from predictive models leads to the systematic underestimation of Greenland's future sea level contribution, especially because both the bare-ice zones available for algal colonization and the length of the biological growth season are set to expand in the future

    'Education, education, education' : legal, moral and clinical

    Get PDF
    This article brings together Professor Donald Nicolson's intellectual interest in professional legal ethics and his long-standing involvement with law clinics both as an advisor at the University of Cape Town and Director of the University of Bristol Law Clinic and the University of Strathclyde Law Clinic. In this article he looks at how legal education may help start this process of character development, arguing that the best means is through student involvement in voluntary law clinics. And here he builds upon his recent article which argues for voluntary, community service oriented law clinics over those which emphasise the education of students

    Operando ultrasonic monitoring of lithium-ion battery temperature and behaviour at different cycling rates and under drive cycle conditions

    Get PDF
    Effective diagnostic techniques for Li-ion batteries are vital to ensure that they operate in the required voltage and temperature window to prevent premature degradation and failure. Ultrasonic analysis has been gaining significant attention as a low cost, fast, non-destructive, operando technique for assessing the state-of-charge and state-of-health of Li-ion batteries. Thus far, the majority of studies have focused on a single C-rate at relatively low charge and discharge currents, and as such the relationship between the changing acoustic signal and C-rate is not well understood. In this work, the effect of cell temperature on the acoustic signal is studied and shown to have a strong correlation with the signal's time-of-flight. This correlation allows for the cell temperature to be inferred using ultrasound and to compensate for these effects to accurately predict the state-of-charge regardless of the C-rate at which the cell is being cycled. Ultrasonic state-of-charge monitoring of a cell during a drive cycle illustrates the suitability of this technique to be applied in real-world situations, an important step in the implementation of this technique in battery management systems with the potential to improve pack safety, performance, and efficiency

    Research priorities for managing the impacts and dependencies of business upon food, energy, water and the environment

    Get PDF
    Delivering access to sufficient food, energy and water resources to ensure human wellbeing is a major concern for governments worldwide. However, it is crucial to account for the ‘nexus’ of interactions between these natural resources and the consequent implications for human wellbeing. The private sector has a critical role in driving positive change towards more sustainable nexus management and could reap considerable benefits from collaboration with researchers to devise solutions to some of the foremost sustainability challenges of today. Yet opportunities are missed because the private sector is rarely involved in the formulation of deliverable research priorities. We convened senior research scientists and influential business leaders to collaboratively identify the top forty questions that, if answered, would best help companies understand and manage their food-energy-water-environment nexus dependencies and impacts. Codification of the top order nexus themes highlighted research priorities around development of pragmatic yet credible tools that allow businesses to incorporate nexus interactions into their decision-making; demonstration of the business case for more sustainable nexus management; identification of the most effective levers for behaviour change; and understanding incentives or circumstances that allow individuals and businesses to take a leadership stance. Greater investment in the complex but productive relations between the private sector and research community will create deeper and more meaningful collaboration and cooperation.This work was supportedby the Economic and Social Research Council [Grant Number ES/L01632X/1] and is part of the Nexus Network Initiative. WJS is funded by Arcadia

    First Dark Matter Search Results from the LUX-ZEPLIN (LZ) Experiment

    Full text link
    The LUX-ZEPLIN (LZ) experiment is a dark matter detector centered on a dual-phase xenon time projection chamber operating at the Sanford Underground Research Facility in Lead, South Dakota, USA. This Letter reports results from LZ's first search for Weakly Interacting Massive Particles (WIMPs) with an exposure of 60 live days using a fiducial mass of 5.5 t. A profile-likelihood ratio analysis shows the data to be consistent with a background-only hypothesis, setting new limits on spin-independent WIMP-nucleon, spin-dependent WIMP-neutron, and spin-dependent WIMP-proton cross-sections for WIMP masses above 9 GeV/c2^2. The most stringent limit is set at 30 GeV/c2^2, excluding cross sections above 5.9×1048\times 10^{-48} cm2^2 at the 90\% confidence level.Comment: 9 pages, 6 figures. See https://tinyurl.com/LZDataReleaseRun1 for a data release related to this pape
    corecore