1,111 research outputs found
Magnetization dynamics and its scattering mechanism in thin CoFeB films with interfacial anisotropy
Studies of magnetization dynamics have incessantly facilitated the discovery
of fundamentally novel physical phenomena, making steady headway in the
development of magnetic and spintronics devices. The dynamics can be induced
and detected electrically, offering new functionalities in advanced electronics
at the nanoscale. However, its scattering mechanism is still disputed.
Understanding the mechanism in thin films is especially important, because most
spintronics devices are made from stacks of multilayers with nanometer
thickness. The stacks are known to possess interfacial magnetic anisotropy, a
central property for applications, whose influence on the dynamics remains
unknown. Here, we investigate the impact of interfacial anisotropy by adopting
CoFeB/MgO as a model system. Through systematic and complementary measurements
of ferromagnetic resonance (FMR), on a series of thin films, we identify
narrower FMR linewidths at higher temperatures. We explicitly rule out the
temperature dependence of intrinsic damping as a possible cause, and it is also
not expected from existing extrinsic scattering mechanisms for ferromagnets. We
ascribe this observation to motional narrowing, an old concept so far neglected
in the analyses of FMR spectra. The effect is confirmed to originate from
interfacial anisotropy, impacting the practical technology of spin-based
nanodevices up to room temperature.Comment: 23 pages,3 figure
A dominant-negative FGF1 mutant (the R50E mutant) suppresses tumorigenesis and angiogenesis.
Fibroblast growth factor-1 (FGF1) and FGF2 play a critical role in angiogenesis, a formation of new blood vessels from existing blood vessels. Integrins are critically involved in FGF signaling through crosstalk. We previously reported that FGF1 directly binds to integrin αvβ3 and induces FGF receptor-1 (FGFR1)-FGF1-integrin αvβ3 ternary complex. We previously generated an integrin binding defective FGF1 mutant (Arg-50 to Glu, R50E). R50E is defective in inducing ternary complex formation, cell proliferation, and cell migration, and suppresses FGF signaling induced by WT FGF1 (a dominant-negative effect) in vitro. These findings suggest that FGFR and αvβ3 crosstalk through direct integrin binding to FGF, and that R50E acts as an antagonist to FGFR. We studied if R50E suppresses tumorigenesis and angiogenesis. Here we describe that R50E suppressed tumor growth in vivo while WT FGF1 enhanced it using cancer cells that stably express WT FGF1 or R50E. Since R50E did not affect proliferation of cancer cells in vitro, we hypothesized that R50E suppressed tumorigenesis indirectly through suppressing angiogenesis. We thus studied the effect of R50E on angiogenesis in several angiogenesis models. We found that excess R50E suppressed FGF1-induced migration and tube formation of endothelial cells, FGF1-induced angiogenesis in matrigel plug assays, and the outgrowth of cells in aorta ring assays. Excess R50E suppressed FGF1-induced angiogenesis in chick embryo chorioallantoic membrane (CAM) assays. Interestingly, excess R50E suppressed FGF2-induced angiogenesis in CAM assays as well, suggesting that R50E may uniquely suppress signaling from other members of the FGF family. Taken together, our results suggest that R50E suppresses angiogenesis induced by FGF1 or FGF2, and thereby indirectly suppresses tumorigenesis, in addition to its possible direct effect on tumor cell proliferation in vivo. We propose that R50E has potential as an anti-cancer and anti-angiogenesis therapeutic agent ("FGF1 decoy")
Optical Conductivity of Clean Metals
We briefly review some basic aspects of transport in clean metals focusing on
the role of electron-electron interactions and neglecting the effects of
impurities, phonons and interband transitions. Both for small Fermi surfaces of
two and three-dimensional metals and open Fermi surfaces of quasi
one-dimensional metals the dc conductivity sigma is largely dominated by
momentum and pseudo-momentum conservation, respectively. In general, the
frequency and temperature dependencies of sigma(w,T) have very little in
common. For small Fermi surfaces in three dimensions we find for example that
the scattering rate is quadratic in frequency, Gamma \propto w^2, even in the
absence of a T^2 contribution.Comment: invited paper for a special edition of Annalen der Physik
commemorating P. Drud
Chitosan-Cellulose Composite for Wound Dressing Material. Part 2. Antimicrobial Activity, Blood Absorption Ability, and Biocompatibility
Chitosan (CS), a polysaccharide derived from chitin, the second most abundant polysaccharide, is widely used in the medical world because of its natural and nontoxic properties and its innate ability for antibacterial and hemostasis effects. In this study, the novel composites containing CS and cellulose (CEL) (i.e., [CEL + CS]), which we have previously synthesized using a green and totally recyclable method, were investigated for their antimicrobial activity, absorption of anticoagulated whole blood, anti-inflammatory activity through the reduction of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), and the biocompatibility with human fibroblasts. The [CEL + CS] composites were found to inhibit the growth of both Gram positive and negative micro-organisms. For examples, the regenerated 100% lyophilized chitosan material was found to reduce growth of Escherichia coli (ATCC 8739 and vancomycin resistant Enterococcus faecalis (ATCC 51299) by 78, 36, and 64%, respectively. The composites are nontoxic to fibroblasts; that is, fibroblasts, which are critical to the formation of connective tissue matrix were found to grow and proliferate in the presence of the composites. They effectively absorb blood, and at the same rate and volume as commercially available wound dressings. The composites, in both air-dried and lyophilized forms, significantly inhibit the production of TNF-α and IL-6 by stimulated macrophages. These results clearly indicate that the biodegradable, biocompatible and nontoxic [CEL + CS] composites, particularly those dried by lyophilizing, can be effectively used as a material in wound dressings
Gas Stripping in Simulated Galaxies with a Multiphase ISM
Cluster galaxies moving through the intracluster medium (ICM) are expected to
lose some of their interstellar medium (ISM) through ISM-ICM interactions. We
perform high resolution (40 pc) three-dimensional hydrodynamical simulations of
a galaxy undergoing ram pressure stripping including radiative cooling in order
to investigate stripping of a multiphase medium. The clumpy, multiphase ISM is
self-consistently produced by the inclusion of radiative cooling, and spans six
orders of magnitude in gas density. We find no large variations in the amount
of gas lost whether or not cooling is involved, although the gas in the
multiphase galaxy is stripped more quickly and to a smaller radius. We also see
significant differences in the morphology of the stripped disks. This occurs
because the multiphase medium naturally includes high density clouds set inside
regions of lower density. We find that the lower density gas is stripped
quickly from any radius of the galaxy, and the higher density gas can then be
ablated. If high density clouds survive, through interaction with the ICM they
lose enough angular momentum to drift towards the center of the galaxy where
they are no longer stripped. Finally, we find that low ram pressure values
compress gas into high density clouds that could lead to enhanced star
formation, while high ram pressure leads to a smaller amount of high-density
gas.Comment: 17 pages, 12 figures, accepted in Ap
Trapped lipopolysaccharide and LptD intermediates reveal lipopolysaccharide translocation steps across the Escherichia coli outer membrane
Lipopolysaccharide (LPS) is a main component of the outer membrane of Gram-negative bacteria, which is essential for the vitality of most Gram-negative bacteria and plays a critical role for drug resistance. LptD/E complex forms a N-terminal LPS transport slide, a hydrophobic intramembrane hole and the hydrophilic channel of the barrel, for LPS transport, lipid A insertion and core oligosaccharide and O-antigen polysaccharide translocation, respectively. However, there is no direct evidence to confirm that LptD/E transports LPS from the periplasm to the external leaflet of the outer membrane. By replacing LptD residues with an unnatural amino acid p-benzoyl-L-phenyalanine (pBPA) and UV-photo-cross-linking in E.coli, the translocon and LPS intermediates were obtained at the N-terminal domain, the intramembrane hole, the lumenal gate, the lumen of LptD channel, and the extracellular loop 1 and 4, providing the first direct evidence and “snapshots” to reveal LPS translocation steps across the outer membrane
Delivering the world’s most intense muon beam
A new muon beam line, the muon science innovative channel, was set up at the Research Center for Nuclear Physics, Osaka University, in Osaka, Japan, using the 392 MeV proton beam impinging on a target. The production of an intense muon beam relies on the efficient capture of pions, which subsequently decay to muons, using a novel superconducting solenoid magnet system. After the pion-capture solenoid, the first 36° of the curved muon transport line was commissioned and the muon flux was measured. In order to detect muons, a target of either copper or magnesium was placed to stop muons at the end of the muon beam line. Two stations of plastic scintillators located upstream and downstream from the muon target were used to reconstruct the decay spectrum of muons. In a complementary method to detect negatively charged muons, the x-ray spectrum yielded by muonic atoms in the target was measured in a germanium detector. Measurements, at a proton beam current of 6 pA, yielded (10.4±2.7)×10^{5} muons per watt of proton beam power (μ^{+} and μ^{-}), far in excess of other facilities. At full beam power (400 W), this implies a rate of muons of (4.2±1.1)×10^{8} muons s^{−1}, among the highest in the world. The number of μ^{-} measured was about a factor of 10 lower, again by far the most efficient muon beam produced. The setup is a prototype for future experiments requiring a high-intensity muon beam, such as a muon collider or neutrino factory, or the search for rare muon decays which would be a signature for phenomena beyond the Standard Model of particle physics. Such a muon beam can also be used in other branches of physics, nuclear and condensed matter, as well as other areas of scientific research
The Type Ia Supernova Rate in Redshift 0.5--0.9 Galaxy Clusters
Supernova (SN) rates are potentially powerful diagnostics of metal enrichment
and SN physics, particularly in galaxy clusters with their deep,
metal-retaining potentials and relatively simple star-formation histories. We
have carried out a survey for supernovae (SNe) in galaxy clusters, at a
redshift range 0.5<z<0.9, using the Advanced Camera for Surveys (ACS) on the
Hubble Space Telescope. We reimaged a sample of 15 clusters that were
previously imaged by ACS, thus obtaining two to three epochs per cluster, in
which we discovered five likely cluster SNe, six possible cluster SNe Ia, two
hostless SN candidates, and several background and foreground events. Keck
spectra of the host galaxies were obtained to establish cluster membership. We
conducted detailed efficiency simulations, and measured the stellar
luminosities of the clusters using Subaru images. We derive a cluster SN rate
of 0.35 SNuB +0.17/-0.12 (statistical) \pm0.13 (classification) \pm0.01
(systematic) [where SNuB = SNe (100 yr 10^10 L_B_sun)^-1] and 0.112 SNuM
+0.055/-0.039 (statistical) \pm0.042 (classification) \pm0.005 (systematic)
[where SNuM = SNe (100 yr 10^10 M_sun)^-1]. As in previous measurements of
cluster SN rates, the uncertainties are dominated by small-number statistics.
The SN rate in this redshift bin is consistent with the SN rate in clusters at
lower redshifts (to within the uncertainties), and shows that there is, at
most, only a slight increase of cluster SN rate with increasing redshift. The
low and fairly constant SN Ia rate out to z~1 implies that the bulk of the iron
mass in clusters was already in place by z~1. The recently observed doubling of
iron abundances in the intracluster medium between z=1 and 0, if real, is
likely the result of redistribution of existing iron, rather than new
production of iron.Comment: Accepted to ApJ. Full resolution version available at
http://kicp.uchicago.edu/~kerens/HSTclusterSNe
- …