591 research outputs found
Steady and Unsteady Nozzle Simulations Using the Conservation Element and Solution Element Method
This paper presents results from computational fluid dynamic (CFD) simulations of a three-stream plug nozzle. Time-accurate, Euler, quasi-1D and 2D-axisymmetric simulations were performed as part of an effort to provide a CFD-based approach to modeling nozzle dynamics. The CFD code used for the simulations is based on the space-time Conservation Element and Solution Element (CESE) method. Steady-state results were validated using the Wind-US code and a code utilizing the MacCormack method while the unsteady results were partially validated via an aeroacoustic benchmark problem. The CESE steady-state flow field solutions showed excellent agreement with solutions derived from the other methods and codes while preliminary unsteady results for the three-stream plug nozzle are also shown. Additionally, a study was performed to explore the sensitivity of gross thrust computations to the control surface definition. The results showed that most of the sensitivity while computing the gross thrust is attributed to the control surface stencil resolution and choice of stencil end points and not to the control surface definition itself.Finally, comparisons between the quasi-1D and 2D-axisymetric solutions were performed in order to gain insight on whether a quasi-1D solution can capture the steady and unsteady nozzle phenomena without the cost of a 2D-axisymmetric simulation. Initial results show that while the quasi-1D solutions are similar to the 2D-axisymmetric solutions, the inability of the quasi-1D simulations to predict two dimensional phenomena limits its accuracy
Fire and grazing in a mesic tallgrass prairie: impacts on plant species and functional traits
Fire is a globally distributed disturbance that impacts terrestrial ecosystems and has been proposed to be a global “herbivore.” Fire, like herbivory, is a top-down driver that converts organic materials into inorganic products, alters community structure, and acts as an evolutionary agent. Though grazing and fire may have some comparable effects in grasslands, they do not have similar impacts on species composition and community structure. However, the concept of fire as a global herbivore implies that fire and herbivory may have similar effects on plant functional traits. Using 22 years of data from a mesic, native tallgrass prairie with a long evolutionary history of fire and grazing, we tested if trait composition between grazed and burned grassland communities would converge, and if the degree of convergence depended on fire frequency. Additionally, we tested if eliminating fire from frequently burned grasslands would result in a state similar to unburned grasslands, and if adding fire into a previously unburned grassland would cause composition to become more similar to that of frequently burned grasslands. We found that grazing and burning once every four years showed the most convergence in traits, suggesting that these communities operate under similar deterministic assembly rules and that fire and herbivory are similar disturbances to grasslands at the trait-group level of organization. Three years after reversal of the fire treatment we found that fire reversal had different effects depending on treatment. The formerly unburned community that was then burned annually became more similar to the annually burned community in trait composition suggesting that function may be rapidly restored if fire is reintroduced. Conversely, after fire was removed from the annually burned community trait composition developed along a unique trajectory indicating hysteresis, or a time lag for structure and function to return following a change in this disturbance regime. We conclude that functional traits and species-based metrics should be considered when determining and evaluating goals for fire management in mesic grassland ecosystems
Genome-wide Linkage Scan to Identify Loci for Age at First Cigarette in Dutch Sibling Pairs
Most smokers begin smoking during adolescence and early age of smoking initiation is related to more frequent current smoking, daily smoking and more dependent smoking (Everret et al., 1999; Lando et al.
Chronic elevation of pulmonary microvascular pressure in chronic heart failure reduces bi-directional pulmonary fluid flux
Aims. Chronic heart failure leads to pulmonary vascular remodelling and thickening of the alveolar–capillary barrier. We examined whether this protective effect may slow resolution of pulmonary oedema consistent with decreased bi-directional fluid flux.
Methods and results. Seven weeks following left coronary artery ligation, we measured both fluid flux during an acute rise in left atrial pressure (n = 29) and intrinsic alveolar fluid clearance (n = 45) in the isolated rat lung. Chronic elevation of pulmonary microvascular pressure prevented pulmonary oedema and decreased lung compliance when left atrial pressure was raised to 20 cmH2O, and was associated with reduced expression of endothelial aquaporin 1 (P = 0.03). However, no other changes were found in mediators of fluid flux or cellular fluid channels. In isolated rat lungs, chronic LV dysfunction (LV end-diastolic pressure and infarct circumference) was also inversely related to alveolar fluid clearance (P ≤ 0.001). The rate of pulmonary oedema reabsorption was estimated by plasma volume expansion in eight patients with a previous clinical history of chronic heart failure and eight without, who presented with acute pulmonary oedema. Plasma volume expansion was reduced at 24 h in those with chronic heart failure (P = 0.03).
Conclusions. Chronic elevation of pulmonary microvascular pressure in CHF leads to decreased intrinsic bi-directional fluid flux at the alveolar–capillary barrier. This adaptive response defends against alveolar flooding, but may delay resolution of alveolar oedema.A National Health and Medical Research Council (NHMRC) grant (#375129); Australian and New Zealand College of Anaesthetists (ANZCA) grant (#08/020); the Flinders Medical Centre Foundation
An international effort towards developing standards for best practices in analysis, interpretation and reporting of clinical genome sequencing results in the CLARITY Challenge
BACKGROUND: There is tremendous potential for genome sequencing to improve clinical diagnosis and care once it becomes routinely accessible, but this will require formalizing research methods into clinical best practices in the areas of sequence data generation, analysis, interpretation and reporting. The CLARITY Challenge was designed to spur convergence in methods for diagnosing genetic disease starting from clinical case history and genome sequencing data. DNA samples were obtained from three families with heritable genetic disorders and genomic sequence data was donated by sequencing platform vendors. The challenge was to analyze and interpret these data with the goals of identifying disease causing variants and reporting the findings in a clinically useful format. Participating contestant groups were solicited broadly, and an independent panel of judges evaluated their performance. RESULTS: A total of 30 international groups were engaged. The entries reveal a general convergence of practices on most elements of the analysis and interpretation process. However, even given this commonality of approach, only two groups identified the consensus candidate variants in all disease cases, demonstrating a need for consistent fine-tuning of the generally accepted methods. There was greater diversity of the final clinical report content and in the patient consenting process, demonstrating that these areas require additional exploration and standardization. CONCLUSIONS: The CLARITY Challenge provides a comprehensive assessment of current practices for using genome sequencing to diagnose and report genetic diseases. There is remarkable convergence in bioinformatic techniques, but medical interpretation and reporting are areas that require further development by many groups
Recommended from our members
Comparative analysis of bones, mites, soil chemistry, nematodes and soil micro-Eukaryotes from a suspected homicide to estimate the post-mortem interval
Criminal investigations of suspected murder cases require estimating the post-mortem interval (PMI, or time after death) which is challenging for longer periods. Here we present the case of human remains found in a Swiss forest. We have used a multidisciplinary approach involving the analysis of bones, soil chemical characteristics, mites and nematodes (by microscopy) and micro-Eukaryotes (by Illumina high throughput sequencing). We analysed soil samples collected beneath the remains of the head, upper and lower body and “control” samples taken a few meters away. The PMI estimated on hair 14C-data via bomb peak radiocarbon dating gave a time range of 1 to 2 years before the finding of the remains on site. Cluster analyses for chemical constituents, nematodes, mites and micro- Eukaryotes revealed two clusters 1) head and upper body and 2) lower body and controls. From mite evidence, we conclude that the body was likely to have been brought to the site after death. However, chemical analyses, nematode community analyses and the analyses of micro-Eukaryotes indicate that decomposition took place at least partly on site. This study illustrates the usefulness of combining several lines of evidence for the study of homicide cases to better calibrate PMI inference tools
Genome-wide analysis of BMI in adolescents and young adults reveals additional insight into the effects of genetic loci over the life course
Genetic loci for body mass index (BMI) in adolescence and young adulthood, a period of high risk for weight gain, are understudied, yet may yield important insight into the etiology of obesity and early intervention. To identify novel genetic loci and examine the influence of known loci on BMI during this critical time period in late adolescence and early adulthood, we performed a two-stage meta-analysis using 14 genome-wide association studies in populations of European ancestry with data on BMI between ages 16 and 25 in up to 29 880 individuals. We identified seven independent loci (P < 5.0 × 10−8) near FTO (P = 3.72 × 10−23), TMEM18 (P = 3.24 × 10−17), MC4R (P = 4.41 × 10−17), TNNI3K (P = 4.32 × 10−11), SEC16B (P = 6.24 × 10−9), GNPDA2 (P = 1.11 × 10−8) and POMC (P = 4.94 × 10−8) as well as a potential secondary signal at the POMC locus (rs2118404, P = 2.4 × 10−5 after conditioning on the established single-nucleotide polymorphism at this locus) in adolescents and young adults. To evaluate the impact of the established genetic loci on BMI at these young ages, we examined differences between the effect sizes of 32 published BMI loci in European adult populations (aged 18-90) and those observed in our adolescent and young adult meta-analysis. Four loci (near PRKD1, TNNI3K, SEC16B and CADM2) had larger effects and one locus (near SH2B1) had a smaller effect on BMI during adolescence and young adulthood compared with older adults (P < 0.05). These results suggest that genetic loci for BMI can vary in their effects across the life course, underlying the importance of evaluating BMI at different age
Tight coupling of leaf area index to canopy nitrogen and phosphorus across heterogeneous tallgrass prairie communities
Nitrogen (N) and phosphorus (P) are limiting nutrients for many plant communities worldwide. Foliar N and P along with leaf area are among the most important controls on photosynthesis and hence productivity. However, foliar N and P are typically assessed as species level traits, whereas productivity is often measured at the community scale. Here, we compared the community-level traits of leaf area index (LAI) to total foliar nitrogen (TFN) and total foliar phosphorus (TFP) across nearly three orders of magnitude LAI in grazed and ungrazed tallgrass prairie in north-eastern Kansas, USA. LAI was strongly correlated with both TFN and TFP across communities, and also within plant functional types (grass, forb, woody, and sedge) and grazing treatments (bison or cattle, and ungrazed). Across almost the entire range of LAI values and contrasting communities, TFN:TFP ratios indicated co-limitation by N and P in almost all communities; this may further indicate a community scale trend of an optimal N and P allocation per unit leaf area for growth. Previously, results from the arctic showed similar tight relationships between LAI:TFN, suggesting N is supplied to canopies to maximize photosynthesis per unit leaf area. This tight coupling between LAI, N, and P in tallgrass prairie suggests a process of optimal allocation of N and P, wherein LAI remains similarly constrained by N and P despite differences in species composition, grazing, and canopy density
Characterization and Generation of Male Courtship Song in Cotesia congregata (Hymenoptera: Braconidae)
Background
Male parasitic wasps attract females with a courtship song produced by rapid wing fanning. Songs have been described for several parasitic wasp species; however, beyond association with wing fanning, the mechanism of sound generation has not been examined. We characterized the male courtship song of Cotesia congregata (Hymenoptera: Braconidae) and investigated the biomechanics of sound production. Methods and Principal Findings
Courtship songs were recorded using high-speed videography (2,000 fps) and audio recordings. The song consists of a long duration amplitude-modulated “buzz” followed by a series of pulsatile higher amplitude “boings,” each decaying into a terminal buzz followed by a short inter-boing pause while wings are stationary. Boings have higher amplitude and lower frequency than buzz components. The lower frequency of the boing sound is due to greater wing displacement. The power spectrum is a harmonic series dominated by wing repetition rate ~220 Hz, but the sound waveform indicates a higher frequency resonance ~5 kHz. Sound is not generated by the wings contacting each other, the substrate, or the abdomen. The abdomen is elevated during the first several wing cycles of the boing, but its position is unrelated to sound amplitude. Unlike most sounds generated by volume velocity, the boing is generated at the termination of the wing down stroke when displacement is maximal and wing velocity is zero. Calculation indicates a low Reynolds number of ~1000. Conclusions and Significance
Acoustic pressure is proportional to velocity for typical sound sources. Our finding that the boing sound was generated at maximal wing displacement coincident with cessation of wing motion indicates that it is caused by acceleration of the wing tips, consistent with a dipole source. The low Reynolds number requires a high wing flap rate for flight and predisposes wings of small insects for sound production
The case for strategic international alliances to harness nutritional genomics for public and personal health
Nutrigenomics is the study of how constituents of the diet interact with genes, and their products, to alter phenotype and, conversely, how genes and their products metabolise these constituents into nutrients, antinutrients, and bioactive compounds. Results from molecular and genetic epidemiological studies indicate that dietary unbalance can alter gene-nutrient interactions in ways that increase the risk of developing chronic disease. The interplay of human genetic variation and environmental factors will make identifying causative genes and nutrients a formidable, but not intractable, challenge. We provide specific recommendations for how to best meet this challenge and discuss the need for new methodologies and the use of comprehensive analyses of nutrient-genotype interactions involving large and diverse populations. The objective of the present paper is to stimulate discourse and collaboration among nutrigenomic researchers and stakeholders, a process that will lead to an increase in global health and wellness by reducing health disparities in developed and developing countrie
- …
