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Chronic Elevation of Pulmonary Microvascular Pressure in Chronic 

Heart Failure Reduces Bi-Directional Pulmonary Fluid Flux   

Dani-Louise Dixon1*, George C Mayne2, Kim M Griggs1, Carmine G De Pasquale3, 

and Andrew D Bersten1. 

Aims Chronic heart failure (CHF) leads to pulmonary vascular remodelling and thickening 

of the alveolocapillary barrier.  We examined whether this protective effect may slow 

resolution of pulmonary oedema consistent with decreased bidirectional fluid flux. 

Methods and results Seven weeks following left coronary artery ligation we 

measured both fluid flux during an acute rise in left atrial pressure (n = 29), and intrinsic 

alveolar fluid clearance (n = 45), in the isolated rat lung. Chronic elevation of pulmonary 

microvascular pressure prevented pulmonary oedema and decreased lung compliance when 

left atrial pressure was raised to 20 cmH2O, and was associated with reduced expression of 

endothelial aquaporin 1 (P = 0.03). However, no other changes were found in mediators of 

fluid flux or cellular fluid channels.  In isolated rat lungs, chronic left ventricular dysfunction 

(left ventricular end-diastolic pressure and infarct circumference) was also inversely related to 

alveolar fluid clearance (P ≤ 0.001).  The rate of pulmonary oedema reabsorption was 

estimated by plasma volume expansion in 8 patients with a previous clinical history of 

chronic heart failure and 8 without, who presented with acute pulmonary oedema.  Plasma 

volume expansion was reduced at 24 hours in those with chronic heart failure (P = 0.03).  

Conclusions Chronic elevation of pulmonary microvascular pressure in CHF leads 

to decreased intrinsic bi-directional fluid flux at the alveolar-capillary barrier. This adaptive 

response defends against alveolar flooding, but may delay resolution of alveolar oedema. 

Keywords lung; oedema; mechanics; ion channels; aquaporins. 
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Introduction 

Acute left ventricular dysfunction usually leads to an acute elevation of pulmonary 

microvascular pressure (Pmv) followed by acute pulmonary oedema (APO).  However, chronic 

elevations in Pmv lead to muscularisation of the pulmonary circulation, thickening of the 

alveolocapillary barrier, and a reduction in the capillary filtration coefficient with amelioration of 

the increase in lung water1.  Indeed, 6 weeks following myocardial infarction in the rat an 

average left ventricular end diastolic pressure (LVEDP) of 25mmHg, which would be expected 

to result in APO, leads only to an increase in lung dry weight2.  In addition to this decrease in 

fluid egress due to reduced capillary filtration coefficient, an increase in alveolar fluid clearance 

may also contribute to the dry lung when Pmv is chronically elevated3.  However, gas diffusion 

and alveolar-membrane conductance are reduced in CHF patients4 consistent with a thickened 

alveolocapillary barrier, and reduced solute clearance from the alveolus.   

Alveolar fluid is regulated by active ion transport followed by passive water movement5.  

Vectorial ion movement out of the alveolus through the epithelium occurs via apically placed 

amiloride sensitive cation channels (ENaC) and basolateral oubain inhibitable Na,K-ATPase, 

which pump K into the cell and Na out.  In addition, aquaporins (AQP), integral membrane 

proteins found on both epithelial and endothelial cells, function as bi-directional water channels. 

As chronic elevation of Pmv leads to lung remodelling that is associated with reduced 

capillary filtration coefficient we hypothesised that intrinsic alveolar fluid clearance, independent 

of circulating factors, may be reduced.  However, previous studies have suggested both 

downregulated6-10 and upregulated vectorial fluid flux, perhaps due to elevated circulating 

catecholamines11,12.  Therefore the aim of this study was to examine bi-directional fluid 

regulation, including factors affecting vectorial fluid movement, in the well established rodent 
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model of chronically elevated Pmv due to left ventricular dysfunction following left coronary 

artery ligation.  As a clinical correlate we examined whether plasma refill following APO13 was 

slowed in patients with known CHF, consistent with slower fluid reabsorption from the alveolus.  

 

 

Methods 

The study protocols conform to the Guide for the Care and Use of Laboratory Animals published 

by the US National Institutes of Health, and the principles outlined in the Declaration of 

Helsinki, and were approved by the Flinders University Animal Welfare Committee and the 

Southern Adelaide Flinders Clinical Human Research Ethics Committee, respectively.  Please 

refer to the on-line supplement for greater detail. 

 

Cardiorespiratory Assessment 

Seven weeks following recovery from left coronary artery ligation2, pulmonary effects were 

investigated in 76 male Sprague-Dawley rats.  Intrinsic to the left coronary artery ligation 

model14 there was a high mortality rate, (45%) and the sedentary survivors did not appear to have 

peripheral oedema or dyspnoea in the time leading to euthanasia.  Anaesthesia was induced 

before catheterisation of the left ventricle via the right carotid artery for determination of 

systemic blood pressure, heart rate and left ventricular end diastolic (LVEDP), as well as arterial 

blood gas analysis (ABL-5, Radiometer, Copenhagen, Denmark).  Left ventricular infarcts were 

graded topographically2 as control (<20% LV infarct circumference, n=46); moderate (20-40%, 

n=18); and large (>40%, n=12).  LVD (left ventricular dysfunction) refers to the combination of 

moderate and large infarct groups (>20% LV infarct).  Animals were divided into two sequential 
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cohorts for measurement of lung mechanics during elevation of left atrial pressure (cohort 1), or 

alveolar fluid clearance followed by lavage and tissue assessment (cohort 2). 

 

Elevated Left Atrial Pressure 

In isolated perfused lungs (IPL; n=29) lung impedance, following a forced oscillation, was 

measured sequentially at 0, 5, 10, 15 and 20 cmH20 left atrial pressure, referenced to the top of 

the lung, before determination of fluid flux. 

 

Alveolar Fluid Clearance Measurement 

In a second cohort of isolated rat lungs (n=47) alveolar fluid clearance (AFC) was measured via 

Evan’s Blue dye concentration calculated as follows:  

AFC = [(Vi – Vf)/Vi] x 100 

where V is the volume of instilled albumin solution (i) and final alveolar fluid (f), and  

Vf = (Vi x EBi)/EBf  

where EB is the concentration of Evans blue dye in the instilled albumin solution (i) and final 

alveolar fluid (f).  

 

Lung Tissue Analysis 

Right lung lobes were freeze-dried for measurement of wet-to-dry weight ratio, tissue NO and 

for α- and β-Na,K-ATPase subunits, α-, β- and γ-ENaC, AQP1, AQP5 and nitric oxide synthase 

(NOS) mRNA levels by qRT-PCR (Supplementary material online, Table S1), before lavage of 

the remaining lung for assay of soluble proteins2. 

Immunohistochemistry was used to identify alveolar epithelial type II cells and AQP1 
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expression2. 

 

Clinical subjects 

Sixteen consecutive patients, admitted to the Intensive Care Unit with APO, defined as sudden 

onset of dyspnoea and diaphoresis with tachycardia, tachypnea, hypertension, widespread 

pulmonary crepitations, and acute respiratory failure, in the absence of fever, were enrolled 

following informed consent at Flinders Medical Centre, South Australia.  Patient demographics, 

haemoglobin and creatinine, and arterial blood gas were analyzed at ICU presentation and after 

24 hours.  Patients with significant renal impairment, defined as a baseline creatinine greater than 

250 µM/L or receiving chronic dialysis, were excluded.  The percentage changes in plasma 

volume (PV) were calculated using haemoglobin (Hb) before (B) and after (A) treatment15. 

% change in PV = 100 x (1 − (HbA/HbB)) 

 

Statistical Analyses 

Statistical analyses were performed using SPSS 18.0 (PASW Inc, Chicago, IL) unless indicated.  

One-way analysis of variance was used to compare three groups, with between group differences 

tested with either Tukey’s HSD or independent samples t test.  Bivariant relationships were 

examined using Pearson’s correlation or quadratic regression curve fit model.  Repeated 

measures were predicted using mixed-effects linear regression (Supplementary material online, 

Table S2; Stata 11.0, Statacorp, TX).  Data are expressed as mean±SD, and P-values ≤0.05 

considered statistically different. 
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Results 

Changes in Cardiorespiratory Variables in Response to Large Infarct 

Seven weeks following left coronary artery ligation, large infarct rats had both increased LVEDP 

and right ventricular (RV) weight (Table 1) consistent with elevated pulmonary artery pressures 

due to left ventricular failure induced CHF.  Myocardial infarcts varied from 0 to 48% of left 

ventricular (LV) circumference and correlated linearly with LVEDP prior to lung harvest (R2 = 

0.772, P ≤ 0.001).  As previously2, the large infarct group with an LVEDP approximating 

24mmHg resulted in an increase in dry lung weight without lung oedema (Table 1). 

 

Effect of Acute Elevation in Left Atrial Pressure in Isolated Perfused Lungs from 

rats with Chronic Left Ventricular Dysfunction 

Isolated perfused lungs of control animals (<20% LV infarct) demonstrated a deterioration in 

lung tissue mechanics (Gtis and Htis) from left atrial pressure elevated to 15-20 cmH2O (Figure 

1 A&B), and an increase in alveolar oedema following left atrial pressure elevation to 20cmH2O 

(Table 2).  However, both isolated perfused lung mechanics and lung water were unchanged in 

moderate and large infarct groups during incremental increase in left atrial pressure from 0 to 

20cmH2O.  No change was observed in airway resistance (Raw) over the full range of left atrial 

pressures (Figure 1C), or in the volume of lymphatic drainage (lung efflux) calculated following 

left atrial pressure increase to 20cmH2O (Table 2).  Observed versus predicted outcomes by 

mixed models analysis is included in the online supplemental material (Supplementary material 

online, Figure S1 & Table S3). 

 

Effect of Increasing Left Ventricular Dysfunction on Alveolar Fluid Clearance 
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A strong inverse quadratic relationship was demonstrated between alveolar fluid clearance and 

both infarct size and LVEDP (Figure 2 A&B).  Weaker negative associations were also evident 

between alveolar fluid clearance and dry lung weight (Figure 2 C), and RV weight (R2 = -0.108, 

P = 0.03; data not shown). 

 

Effect of Left Ventricular Dysfunction on Expression of ENaC, Na,K-ATPase, AQP-

1 and AQP-5 Fluid Channels 

Expression of AQP1 mRNA decreased with LV dysfunction (>20% LV infarct) and correlated 

with alveolar fluid clearance (Figure 3 A&B).  Immunohistochemistry also demonstrated a 

decrease in AQP1 protein expression in the microvasculature of lung tissue sections from animals 

with LV dysfunction (>20% LV infarct) (Figure 3 C&D). 

No relationship was found between either infarct size or alveolar fluid clearance and 

ENaC-α, ENaC-β or ENaC-γ, Na,K-ATPase-α or Na,K-ATPase-β, or AQP5 (Supplementary 

material online, Table S4).  The expression ratio of ENaC-α:β:γ was approximately 150:1:6, 

while the expression ratio of Na,K-ATPase-α:β was 3.7:1 and did not alter with LV dysfunction 

(P > 0.05). 

 

Effect of Left Ventricular Dysfunction on Mediators of Pulmonary Fluid Regulation 

Concentrations of soluble mediators of alveolar fluid clearance (TNF-α, TGF-β, NO) were not 

related to either LV dysfunction (LV infarct >20) or alveolar fluid clearance (Supplementary 

material online, Table S5).  Similarly, there was no change in the mRNA expression of either 

inducible or constitutive nitric oxide synthase (NOS) with LV dysfunction or alveolar fluid 

clearance (Table S5). 
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Plasma Volume Change in Clinical APO in CHF and non-CHF patients 

APO patients with a prior clinical history of CHF (n=8) and those without (non-CHF, n=8) were 

similar in age, gender, severity of illness and respiratory dysfunction at ICU admission (Table 3).  

CHF patients had a lower left ventricular ejection fraction.  Non-CHF patients were more 

acidotic with higher arterial PCO2 than CHF patients; plasma lactate was elevated equally in both 

groups.  More CHF patients than non-CHF were taking furosemide prior to admission.  Plasma 

volume was significantly increased 24h following ICU admission in all APO patients.  However, 

the percent change in plasma volume was significantly lower in the CHF patients when 

compared with non-CHF patients. 

 

 

Discussion 

Chronic elevation in Pmv due to left ventricular dysfunction results in pulmonary parenchymal 

remodelling which protects against the development of pulmonary oedema1,2. Despite this, APO 

in response to acute elevations of Pmv is a common clinical issue. We examined intrinsic bi-

directional fluid flux in the lung following chronic elevation of Pmv due to left ventricular 

dysfunction and observed both increased tolerance to acute left atrial pressure elevation and 

impaired clearance of extraneous lung fluid.  We also report a decrease in endothelial AQP1 that 

correlates with the reduction in alveolar fluid clearance, and an increase in dry lung weight that 

we have previously found to correlate with lung collagen2.  These data are consistent with 

reduced bi-directional fluid flux due to both structural and cellular remodelling.  Accordingly, 

our clinical data suggest slower reabsorption of APO from patients with CHF compared to 
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patients without. 

Alveolar fluid clearance is increased by dopamine, β-adrenergic stimulation, 

glucocorticoids, aldosterone, cytokines, thyroid hormones and pulmonary oedema fluid itself, and 

decreased by hypoxia, reactive oxygen species and raised left atrial pressure5-7.  Decreased 

alveolar fluid clearance with raised left atrial pressure is ameliorated by extraneous increase in 

Na,K-ATPase abundance and, or, opening potential7,8.  However, our data from rats with chronic 

elevation of Pmv found no relationship between alveolar fluid clearance and the expression of 

ENaC or Na,K-ATPase subunits, the mediators of ion channel expression or activity measured.  

This is consistent with a previous report in which no differences in mRNA or protein expression 

of ENaC and Na,K-ATPase subunits were found in whole lung homogenates of control and CHF 

rats at 16 weeks post left coronary artery ligation16.   

Catecholamine production stimulates recruitment and cell surface expression of Na,K-

ATPase following an acute rise in Pmv12.  However, by measuring alveolar fluid clearance in the 

isolated lung we avoided the confounding effects of increased circulating catecholamines found 

with most stressful situations and with CHF itself17.  While this may reduce the direct clinical 

relevance of our data, it does allow estimation of the intrinsic reabsorption of alveolar fluid. The 

clinical interpretation of such data would therefore need to consider whether β-blocking or β-

agonist drugs were administered and the rapidly changing patterns of circulating catecholamines 

commonly found in this cohort.  

Three alternative mediators of alveolar fluid regulation were also examined.  NO and 

TGF-β1 which decrease alveolar fluid clearance via inhibition of Na+
 transport and ENaC, 

respectively, and TNF-α, which increases or decreases fluid clearance in a concentration and 

temporal relationship9,18-20.  While no association with tissue NO or NOS was found in the 
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current study, at 16 weeks following left coronary artery ligation in the rat NO synthesis by 

endothelial cells has been reported to be impaired, possibly restoring the rate of alveolar fluid 

clearance16,21.  TNF-α is a pro-inflammatory cytokine that plays an important role in the 

activation of host defence, and is associated with increased mortality in CHF patients.  In vitro 

TNF-α inhibits Na+ transport and down regulates ENaC activity and protein expression in 

isolated rat alveolar epithelial cells20, while in vivo TNF-α is associated with an increase of 

alveolar fluid clearance22.  However, no change in alveolar TNF-α was found in our rat model at 

7 weeks post-coronary artery ligation.  TGF-β serves a primary role in tissue growth, repair and 

remodelling throughout the body, and correlates with symptom severity in CHF23.  TGF-β 

inhibits homeostatic fluid regulation by decreasing sodium and fluid transport in alveolar 

epithelium via an ERK1/2-dependant repression of αENaC19, while increasing basolateral surface 

expression of Na,K-ATPase24.  While no change in TGF-β was discerned in bronchoalveolar 

lavage of animals in the current study, this may be indicative of the paracrine nature of this 

cytokine in the lung, or may reflect the refined alveolar fibrotic remodelling observed in this rat 

model2. 

Aquaporins are fundamental to the maintenance of fluid homeostasis.  AQP1, AQP4 and 

AQP5 are predominant in the lung on endothelium, airway epithelium and alveolar epithelium, 

respectively.  Expression of lung AQP appears to be regulated by inflammation via 

corticosteroids and cytokines.  AQP1 knockout produces greater than 10-fold decrease in 

microvascular and alveolar-capillary water permeability resulting in decreased hydrostatic lung 

oedema25.  However, AQP1 does not affect alveolar fluid clearance in models of acute lung 

injury26.  Expression of lung endothelial AQP1 is decreased in models of viral infection, 

pulmonary fibrosis and, recently, consistent with our results, in CHF27-29.  Differential expression 
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patterns of AQP1 to AQP5 in each of these models with resultant change in pulmonary oedema 

support an independent role for AQP1 in prevention of capillary filtration. However, as a 

decrease in endothelial AQP1 in the absence of concurrent changes in epithelial sodium channels 

and AQP5 would seem insufficient to explain the reduction in alveolar fluid clearance, we 

suggest that structural remodelling is likely to be the major component.  Indeed, a similar 

paradigm is recognised both clinically and experimentally in the diabetic lung whereby 

protection against ARDS may be attributed to thickened endothelial and epithelial basement 

membranes30,31, while diabetic CHF patients exhibit a more severe reduction in alveolocapillary 

membrane conductance than those with CHF alone32. 

Alveolar fluid clearance was strongly and inversely related to both the size of the 

myocardial infarct and LVEDP, and more weakly inversely related to dry lung weight. Given the 

lack of correlation between alveolar fluid clearance and ion channels or mediators of alveolar 

fluid regulation, and the previously reported correlation between dry lung weight and collagen 

content2, we suggest that basement membrane structural changes most likely explain this 

decrease.  As deletion of AQP1 does not influence alveolar fluid clearance, perhaps due to fluid 

accumulation in the interstitium, this is likely to have a lesser contribution, if any. 

Maron and coworkers16 reported that alveolar fluid clearance was increased with β-

adrenoceptor stimulation in this model, albeit at 16 weeks post-infarct, which correlated with 

hyperplasia of type II cells and was greater than the increase in control lungs.  We quantitated the 

increase in type II cell number with chronic elevation in Pmv, and found that while large infarct 

animals with an LVEDP of around 25 mmHg had an increase in type II cell number of about 

25%, there was no evidence of hyperplasia in moderate infarct animals with an LVEDP of 

around 15 mmHg.  This lack of a graduated increase in type II cell number suggests the decrease 
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in alveolar fluid clearance we report is not directly related to alveolar type II cell prevalence. 

Plasma volume restoration following an episode of APO was estimated to be less in 

patients with CHF, consistent with reduced alveolar fluid clearance.  These data derive from a 

previously validated methodology13 which is indirect in that it assumes haemoconcentration as a 

result of APO, and is therefore not definitive.  Patients without CHF may rapidly reduce Pmv 

with treatment of myocardial ischemia or hypertension leading to a reversal of the hydrostatic 

gradient.  This gradient was not measured as few patients had pulmonary artery catheters placed.  

However, the changes in Pmv with APO can be extremely rapid and may have normalised prior 

to catheter placement, despite the prolonged phase of increased extravascular lung water33. 

Patients without a history of CHF were more acidaemic possibly consistent with higher acuity 

and higher circulating catecholamine levels which might have led to increased alveolar fluid 

flux.  As both groups had similar impairment in oxygenation and similar elevations in plasma 

lactate, which we have previously found strongly correlated with plasma epinephrine and 

norepinephrine,34 this mechanism seems a less likely explanation for the difference found in 

plasma volume restoration.  However, we did not measure catecholamine levels in the current 

study. 

Given the prevalence, morbidity and mortality from CHF, specifically APO, all possible 

interventions should be examined.  The interface between the failing heart and the lung, the 

alveolocapillary barrier, offers a direct target for investigation and intervention in decompensated 

heart failure, particularly following a decade of disappointing acute cardio-renal interventions35.  

Furthermore, the independent impact of pulmonary hypertension on mortality in CHF supports 

the importance of the heart lung interaction in this complex syndrome36.  The reduction in 

alveolar fluid clearance in CHF suggested by our data, and consequent prolonged period of 

alveolar oedema, extends our understanding of the pathophysiologic challenges in managing 
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decompensated heart failure patients. 

This study had limitations which should be addressed in future projects.  While the 

literature on AQP1 knockout animals supports our hypothesis that a decrease in these channels is 

not the primary mechanisms for decreased alveolar fluid clearance, this was not directly 

assessed.  Studies using AQP1 agonists and antagonists should be undertaken in this model as 

these become available.  Further, a lack of change in ion channels, AQP5 or NOS mRNA does 

not exclude the possibility of changes at the protein or functional level.  Clinically, we estimated 

that plasma volume restoration following 24 hours of cardiorespiratory support subsequent to an 

episode of APO was less in patients with CHF, consistent with reduced alveolar fluid clearance. 

While this methodology was indirect and patient numbers relatively small, the finding of reduced 

haemodilution in CHF in the absence of differences in fluid balance is consistent with the 

invasive animal data.  This result should be confirmed in a clinical study utilising a direct 

method that examines alveolar fluid clearance and the effect of confounders. 

Our data support the hypothesis of a decrease in intrinsic bi-directional fluid flux at the 

alveolar capillary barrier where an elevation in Pmv is long standing, which may both protect 

against the development of pulmonary oedema, and contribute to its slow resolution once fluid 

has breached the alveolus.  Given the clinical relevance of plasma refill rate35 and extravascular 

lung water in the management of heart failure, our observations may have direct clinical 

relevance and warrant further investigation.
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LEGENDS: 

Figure 1  Seven weeks following left coronary artery ligation lung impedance 

mechanics (mean±SD) of isolated perfused lungs from rats with moderate (20-40% left 

ventricular (LV) infarct circumference, n=7) or large (>40% LV infarct circumference, 

n=9) infarcts are unchanged during sequential elevation of left atrial pressure (Pla) (0, 5, 

10, 15 and 20 cmH20 referenced to the top of the lung) analysed by linear mixed models 

(P > 0.05).  However, in control lungs (0-20% LV infarct circumference, n=12) Pla 

elevation of 15-20 cmH2O resulted in an increase in both A, tissue resistance (Gtis; P ≤ 

0.02) and B, tissue elastance (Htis; P ≤ 0.01), while C, airways resistance (Raw) 

remained unchanged (P > 0.2). 

 

Figure 2  Seven weeks following left coronary artery ligation there is a negative 

relationship between alveolar fluid clearance (AFC) measured by Evan’s Blue dye 

concentration in isolated lungs (n=47) and, A, left ventricular (LV) infarct circumference 

(R2 = -0.931, P ≤ 0.001), B, left ventricular end diastolic pressure (LVEDP) (R2 = -0.782, 

P ≤ 0.001), and C, dry lung weight (R2 = -0.151, P = 0.009), analysed by quadratic 

regression curve fit. 

 

Figure 3  Seven weeks following left coronary artery ligation there is A, a difference in 

endothelial aquaporin (AQP) 1 mRNA expression measured by qRT PCR in lungs of 

rats with left ventricular (LV) dysfunction (>20% LV infarct circumference, n=4) and 

those of controls (0-20% LV infarct circumference, n=4) analysed by independent t test 

(P = 0.006).  In addition, there is B, a positive linear relationship between alveolar fluid 
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clearance (AFC) measured by Evan’s Blue dye concentration in isolated lungs and 

endothelial AQP 1 mRNA (n=9), analysed by Pearson correlation (R2 = 0.33, P = 0.03).  

Immunohistochemical labelling of AQP1 protein (stained brown) from C, control and D, 

large infarct (>40% LV infarct) rats demonstrated an absence of AQP1 expression in the 

alveolar microvasculature of the large infarct rats compared to control. 
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Table 1  Effect of left coronary artery ligation on cardiorespiratory variables 

One-way analysis of variance for change over the three groups, with.  Values are mean ± SD.  RV 

weight and wet to dry weight ratio for alveolar fluid clearance cohort only; Control n=19, Moderate 

n=10, Large n=3. 

RV, right ventricle, LVEDP, left ventricular end diastolic pressure.  

* P≤0.05 vs. controls, † P≤0.05 vs. moderate, Tukey HSD posthoc analysis.   

  

 Control (n=45) 

(0-20% MI) 

Moderate (n=18) 

(20-40% MI) 

Large (n=12) 

(>40% MI) 

P-value 

Myocardial infarct (% LV) 5.5±7.0 28.9±4.8* 44.8±3.4*† ≤0.001 

RV weight (mg/g body wt) 0.88±0.07 1.00±0.11 1.02±0.08* 0.003 

LVEDP (mmHg) 8.5±2.7 16.0±4.8* 23.0±1.9*† ≤0.001 

Heart rate (beats/min) 366±30 345±30 343±23 0.09 

Lung dry wt (mg/g body wt) 0.07±0.02 0.08±0.03 0.10±0.04*† 0.01 

Wet to dry lung weight ratio 5.0±0.5 5.0±0.3 5.4±0.6 0.39 
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Table 2  Pulmonary fluid balance in isolated perfused lungs following sequential left 

atrial pressure (Pla) increase from 0 to 20cmH2O 

One-way analysis of variance for change over the three groups.  Values are mean ± SD. 

Wet to dry weight of upper right lung lobe only.   

Lymphatic leak: lung fluid leakage (lung efflux); Tissue oedema: difference between the decrease in 

volume of the perfusate reservoir (lung flux) and the volume collected from lung fluid leakage (lung 

efflux). 

* P≤0.05 vs. controls, Tukey HSD posthoc analysis. 

  

 Control (n=7) 

(0-20% MI) 

Moderate (n=6) 

(20-40% MI) 

Large (n=6) 

(>40% MI) 

P-value 

Perfusate starting volume (ml) 84±9 77±3 81±11 0.42 

Lymphatic leak (ml/gm body weight) 0.06±0.03 0.08±0.02 0.08±0.03 0.61 

Tissue oedema (ml/gm body weight) 0.020±0.007 0.011±0.007 0.009±0.007* 0.04 

Wet to dry lung weight ratio 16.8±5.2 8.3±2.7* 11.0±3.12* 0.004 
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Table 3  Patient characteristics by CHF group 

Independent samples t test or Pearson Chi-square test. ‡Prior to admission. 

ACE, angiotensin converting enzyme; ARB, angeotensin II receptor blocker.  

 Non-CHF (n=8) CHF (n=8) P-value 

Age (years) 72 ± 18 71 ± 20 0.92 

Gender, male (%) 4 (50) 4 (50) 1.00 

Ejection fraction (%) 50 ± 20 29 ± 8 0.03 

Frusemide, yes (%)‡ 1 (12.5) 5 (62.5) 0.04 

ACE/ARB, yes (%)‡ 3 (37.5) 5 (62.5) 0.32 

β-Blocker, yes (%)‡ 2 (25) 4 (50) 0.30 

APACHE II score 21.6 ± 8.9 24.8 ± 4.9 0.40 

APACHE III score 118.0 ± 38.2 120.4 ± 40.0 0.89 

Respiratory rate (breaths/min) 30 ± 13 28 ± 8 0.77 

Heart rate (beats/min) 103 ± 29 109 ± 13 0.66 

Mean arterial pressure (mmHg) 101 ± 18 105 ± 19 0.70 

pH 7.15 ± 0.12 7.31 ± 0.09 0.03 

PaCO2 (mmHg) 69 ± 23 42 ± 12 0.02 

PaO2 (mmHg) 100 ± 71 84 ± 68 0.68 

PaO2-FiO2 ratio 134 ± 76 153 ± 68 0.65 

Lactate (mM/L) 3.6 ± 2.2 3.6 ± 2.0 0.99 

Creatinine (µM/L) 97 ± 40 141 ± 46 0.09 

Fluid balance (ml) -559 ± 1382 -244 ± 515 0.6 

∆ plasma volume (%) 23.7 ± 8.2 16.0 ± 3.2 0.03 

Length of stay (days) 6.1 ± 4.9 3.3 ± 2.6 0.16 
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