67 research outputs found

    Paramétrisation de données de capture de mouvement pour la compression d'animations 3D

    Get PDF
    National audienceLes données de capture de mouvement présentent un problème de taille, qu'il s'agisse de leur stockage ou de leur transmission. Nous nous intéressons ici à une méthode de compression avec pertes de telles données. Celles-ci sont constituées des orientations des articulations d'un squelette, aussi proposons-nous une méthode de compression de données d'orientation. Dans le but de minimiser les erreurs lors de la reconstruction des données partielles, nous utilisons des méthodes d'analyse multi-résolution ainsi que d'analyse statistique travaillant directement dans la sphère des quaternions unité afin d'éviter les singularités liées aux autres représentations. Nous décomposons une animation en niveaux de détails grâce à une variante du lifting scheme utilisant des splines dans l'espace tangent à la 3-sphère unité. Les niveaux de détail sont ensuite compressés par Analyse en Géodésiques Principales approximée dans l'espace tangent. Les influences des différents paramètres de la compression sont présentées. Des taux de compression de l'ordre de 100x sont obtenus, avec des dégradations visuelles mineures. Nous envisageons enfin d'éventuelles solutions pour corriger certains artéfacts visuels tels que le footskate

    Stable Constrained Dynamics

    Get PDF
    International audienceWe present a unification of the two main approaches to simulate deformable solids, namely elasticity and constraints. Elasticity accurately handles soft to moderately stiff objects, but becomes numerically hard as stiffness increases. Constraints efficiently handle high stiffness, but when integrated in time they can suffer from instabilities in the nullspace directions, generating spurious transverse vibrations when pulling hard on thin inextensible objects or articulated rigid bodies. We show that geometric stiffness, the tensor encoding the change of force directions (as opposed to intensities) in response to a change of positions, is the missing piece between the two approaches. This previously neglected stiffness term is easy to implement and dramatically improves the stability of inextensible objects and articulated chains, without adding artificial bending forces. This allows time step increases up to several orders of magnitude using standard linear solvers

    Principal Geodesic Dynamics

    Get PDF
    International audienceThis paper presents a new integration of a data-driven approach using dimension reduction and a physically-based simulation for real-time character animation. We exploit Lie group statistical analysis techniques (Principal Geodesic Analysis, PGA) to approximate the pose manifold of a motion capture sequence by a reduced set of pose geodesics. We integrate this kinematic parametrization into a physically-based animation approach of virtual characters, by using the PGA-reduced parametrization directly as generalized coordinates of a Lagrangian formulation of mechanics. In order to achieve real-time without sacrificing stability, we derive an explicit time integrator by approximating existing variational integrators. Finally, we test our approach in task-space motion control. By formulating both physical simulation and inverse kinematics time stepping schemes as two quadratic programs, we propose a features-based control algorithm that interpolates between the two metrics. This allows for an intuitive trade-off between realistic physical simulation and controllable kinematic manipulation

    6D Frictional Contact for Rigid Bodies

    Get PDF
    International audienceWe present a new approach to modeling contact between rigid objects that augments an individual Coulomb friction point-contact model with rolling and spinning friction constraints. Starting from the intersection volume, we compute a contact normal from the volume gradient. We compute a contact position from the first moment of the intersection volume, and approximate the extent of the contact patch from the second moment of the intersection volume. By incorporating knowledge of the contact patch into a point contact Coulomb friction formulation, we produce a 6D constraint that provides appropriate limits on torques to accommodate displacement of the center of pressure within the contact patch, while also providing a rotational torque due to dry friction to resist spinning. A collection of examples demonstrate the power and benefits of this simple formulation

    Seamless Adaptivity of Elastic Models

    Get PDF
    International audienceA new adaptive model for viscoelastic solids is presented. Unlike previous approaches, it allows seamless transitions, and simplifications in deformed states. The deformation field is generated by a set of physically animated frames. Starting from a fine set of frames and mechanical energy integration points, the model can be coarsened by attaching frames to others, and merging integration points. Since frames can be attached in arbitrary relative positions, simplifications can occur seamlessly in deformed states, without returning to the original shape, which can be recovered later after refinement. We propose a new class of velocity-based simplification criterion based on relative velocities. Integration points can be merged to reduce the computation time even more, and we show how to maintain constant elastic forces through the levels of detail. This meshless adaptivity allows significant improvements of computation time

    Biomechanical Morphing for Personalized Fitting of Scoliotic Torso Skeleton Models

    Get PDF
    The use of patient-specific biomechanical models offers many opportunities in the treatment of adolescent idiopathic scoliosis, such as the design of personalized braces. The first step in the development of these patient-specific models is to fit the geometry of the torso skeleton to the patient’s anatomy. However, existing methods rely on high-quality imaging data. The exposure to radiation of these methods limits their applicability for regular monitoring of patients. We present a method to fit personalized models of the torso skeleton that takes as input biplanar low-dose radiographs. The method morphs a template to fit annotated points on visible portions of the spine, and it relies on a default biomechanical model of the torso for regularization and robust fitting of hardly visible parts of the torso skeleton, such as the rib cage. The proposed method provides an accurate and robust solution to obtain personalized models of the torso skeleton, which can be adopted as part of regular management of scoliosis patients. We have evaluated the method on ten young patients who participated in our study. We have analyzed and compared clinical metrics on the spine and the full torso skeleton, and we have found that the accuracy of the method is at least comparable to other methods that require more demanding imaging methods, while it offers superior robustness to artifacts such as interpenetration of ribs. Normal-dose X-rays were available for one of the patients, and for the other nine we acquired low-dose X-rays, allowing us to validate that the accuracy of the method persisted under less invasive imaging modalities

    Generation of Human-Like Movement from Symbolized Information

    Get PDF
    An important function missing from current robotic systems is a human-like method for creating behavior from symbolized information. This function could be used to assess the extent to which robotic behavior is human-like because it distinguishes human motion from that of human-made machines created using currently available techniques. The purpose of this research is to clarify the mechanisms that generate automatic motor commands to achieve symbolized behavior. We design a controller with a learning method called tacit learning, which considers system–environment interactions, and a transfer method called mechanical resonance mode, which transfers the control signals into a mechanical resonance mode space (MRM-space). We conduct simulations and experiments that involve standing balance control against disturbances with a two-degree-of-freedom inverted pendulum and bipedal walking control with humanoid robots. In the simulations and experiments on standing balance control, the pendulum can become upright after a disturbance by adjusting a few signals in MRM-space with tacit learning. In the simulations and experiments on bipedal walking control, the robots realize a wide variety of walking by manually adjusting a few signals in MRM-space. The results show that transferring the signals to an appropriate control space is the key process for reducing the complexity of the signals from the environment and achieving diverse behavior

    Non local spatial and angular matching : enabling higher spatial resolution diffusion MRI datasets through adaptive denoising

    Get PDF
    Diffusion magnetic resonance imaging (MRI) datasets suffer from low Signal-to-Noise Ratio (SNR), especially at high b-values. Acquiring data at high b-values contains relevant information and is now of great interest for microstructural and connectomics studies. High noise levels bias the measurements due to the non-Gaussian nature of the noise, which in turn can lead to a false and biased estimation of the diffusion parameters. Additionally, the usage of in-plane acceleration techniques during the acquisition leads to a spatially varying noise distribution, which depends on the parallel acceleration method implemented on the scanner. This paper proposes a novel diffusion MRI denoising technique that can be used on all existing data, without adding to the scanning time. We first apply a statistical framework to convert both stationary and non stationary Rician and non central Chi distributed noise to Gaussian distributed noise, effectively removing the bias. We then introduce a spatially and angular adaptive denoising technique, the Non Local Spatial and Angular Matching (NLSAM) algorithm. Each volume is first decomposed in small 4D overlapping patches, thus capturing the spatial and angular structure of the diffusion data, and a dictionary of atoms is learned on those patches. A local sparse decomposition is then found by bounding the reconstruction error with the local noise variance. We compare against three other state-of-the-art denoising methods and show quantitative local and connectivity results on a synthetic phantom and on an in-vivo high resolution dataset. Overall, our method restores perceptual information, removes the noise bias in common diffusion metrics, restores the extracted peaks coherence and improves reproducibility of tractography on the synthetic dataset. On the 1.2 mm high resolution in-vivo dataset, our denoising improves the visual quality of the data and reduces the number of spurious tracts when compared to the noisy acquisition. Our work paves the way for higher spatial resolution acquisition of diffusion MRI datasets, which could in turn reveal new anatomical details that are not discernible at the spatial resolution currently used by the diffusion MRI community

    Collaborative patch-based super-resolution for diffusion-weighted images

    Full text link
    In this paper, a new single image acquisition super-resolution method is proposed to increase image resolution of diffusion weighted (DW) images. Based on a nonlocal patch-based strategy, the proposed method uses a non-diffusion image (b0) to constrain the reconstruction of DW images. An extensive validation is presented with a gold standard built on averaging 10 high-resolution DW acquis itions. A comparison with classical interpo- lation methods such as trilinear and B-spline demonstrates the competitive results of our proposed approach in termsofimprovementsonimagereconstruction,fractiona lanisotropy(FA)estimation,generalizedFAandangular reconstruction for tensor and high angular resolut ion diffusion imaging (HARDI) models. Besides, fi rst results of reconstructed ultra high resolution DW images are presented at 0.6 × 0.6 × 0.6 mm 3 and0.4×0.4×0.4mm 3 using our gold standard based on the average of 10 acquisitions, and on a single acquisition. Finally, fi ber tracking results show the potential of the proposed super-resolution approach to accurately analyze white matter brain architecture.We thank the reviewers for their useful comments that helped improve the paper. We also want to thank the Pr Louis Collins for proofreading this paper and his fruitful comments. Finally, we want to thank Martine Bordessoules for her help during image acquisition of DWI used to build the phantom. This work has been supported by the French grant "HR-DTI" ANR-10-LABX-57 funded by the TRAIL from the French Agence Nationale de la Recherche within the context of the Investments for the Future program. This work has been also partially supported by the French National Agency for Research (Project MultImAD; ANR-09-MNPS-015-01) and by the Spanish grant TIN2011-26727 from the Ministerio de Ciencia e Innovacion. This work benefited from the use of FSL (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/), FiberNavigator (code.google.com/p/fibernavigator/), MRtrix software (http://www. brain.org.au/software/mrtrix/) and ITKsnap (www.itk.org).Coupé, P.; Manjón Herrera, JV.; Chamberland, M.; Descoteaux, M.; Hiba, B. (2013). Collaborative patch-based super-resolution for diffusion-weighted images. NeuroImage. 83:245-261. https://doi.org/10.1016/j.neuroimage.2013.06.030S2452618

    RĂ©duction de dimension pour l'animation de personnages

    No full text
    In this thesis, we propose novel, data-driven representations for humanposes, suitable for real-time synthesis of novel character motion. Inthe first part, we exploit Lie group statistical analysis techniques (PrincipalGeodesic Analysis, PGA) to approximate the pose manifold of amotion capture sequence by a reduced set of pose geodesics. We proposean inverse kinematics algorithm using this reduced parametrizationto automatically produce poses that are close to the learning set. Wedemonstrate the efficiency of the resulting pose model by an applicationto motion capture data compression, where only a few end-effector trajectoriesare used to recover a good approximation of the initial data.In the second part, we extend this approach to the physically-basedanimation of virtual characters. The PGA-reduced parametrization providesgeneralized coordinates in a Lagrangian formulation of mechanics.We derive an explicit time integrator by approximating existingvariational integrators, and propose a damping model based on theLevenberg-Marquardt algorithm. We also describe a geometric, datadriven,angular limit learning algorithm, and the associated kinematicconstraints.In the third part, we reach the problem of task-space motion control.By formulating both physical simulation and inverse kinematicstime stepping schemes as two quadratic programs, we propose a simplepseudo-control algorithm that interpolates between the two metrics.This allows for an intuitive trade-off between uncontrolled simulationand kinematic manipulation. Since this approach makes use of externalforces, we propose an alternate formulation using only the generalizedforces associated to the pose parametrization. A control algorithmis obtained by the relaxation of the exact, non-convex control problemunder unilateral constraints, into a convex quadratic program. Thesealgorithms are evaluated on simple balance and tracking controllers.Dans cette thèse, nous proposons de nouvelles representations pourles poses du mouvement humain, apprises sur des données réelles, envue d’une synthèse de nouveaux mouvements en temps-réel. Dans unepremière partie, nous exploitons une méthode statistique adaptée auxgroupes de Lie (Analyse en Géodésiques Principales, AGP) pour approximerla variété des poses d’un sujet en mouvement, à partir de donnéesde capture de mouvement. Nous proposons un algorithme de cinématiqueinverse exploitant cette paramétrisation réduite, permettantpar construction de synthétiser des poses proches des données initiales.Nous validons ce modèle cinématique par une application à la compressionde données de mouvements, dans laquelle seules quelques trajectoiresdes extrémités des membres du squelettes permettent de reconstruireune bonne approximation de l’ensemble des données initiales.Dans une deuxième partie, nous étendons cette approche à l’animationphysique de personnages virtuels. La paramétrisation réduitepar AGP fournit les coordonnées généralisées de la formulation Lagrangiennede la mécanique. Nous dérivons un intégrateur temporelexplicite basé sur les intégrateurs variationnels. Afin d’en améliorer lastabilité, nous proposons un modèle d’amortissement inspiré de l’algorithmede Levenberg-Marquardt. Nous présentons également une méthodegéométrique d’apprentissage des limites angulaires sur des donnéesde capture de mouvement, ainsi que leur application comme contraintescinématiques.Dans une troisième partie, nous abordons le problème du contrôledu mouvement. En formulant les étapes de la simulation physique d’unepart, et de la cinématique inverse d’autre part comme deux programmesquadratiques, nous proposons un algorithme de pseudo-contrôle parinterpolation des métriques, permettant un compromis intuitif entre simulationphysique non-contrôlée, et cinématique inverse. Cette approchefaisant intervenir des forces externes, nous proposons une formulationalternative, utilisant uniquement les forces associées à la paramétrisationréduite des poses. Cette formulation est obtenue par relaxationdu problème théorique de contrôle sous contraintes unilatérales, nonconvexe,en un programme quadratique convexe. Ces algorithmes sontévalués sur des contrôleurs d’équilibre et de suivi
    • …
    corecore