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An important function missing from current robotic systems is a human-like method for

creating behavior from symbolized information. This function could be used to assess the

extent to which robotic behavior is human-like because it distinguishes human motion

from that of human-made machines created using currently available techniques. The

purpose of this research is to clarify the mechanisms that generate automatic motor

commands to achieve symbolized behavior. We design a controller with a learning

method called tacit learning, which considers system–environment interactions, and

a transfer method called mechanical resonance mode, which transfers the control

signals into a mechanical resonance mode space (MRM-space). We conduct simulations

and experiments that involve standing balance control against disturbances with a

two-degree-of-freedom inverted pendulum and bipedal walking control with humanoid

robots. In the simulations and experiments on standing balance control, the pendulum

can become upright after a disturbance by adjusting a few signals in MRM-space with

tacit learning. In the simulations and experiments on bipedal walking control, the robots

realize a wide variety of walking by manually adjusting a few signals in MRM-space.

The results show that transferring the signals to an appropriate control space is the key

process for reducing the complexity of the signals from the environment and achieving

diverse behavior.

Keywords: mechanical resonance mode, tacit learning, control structure, symbolized information, human-like

movement

1. INTRODUCTION

Can robots be good neighbors? Despite much effort by many researchers to make robots be good
partners, robotic systems remain limited to being merely useful tools in factories and houses1.
This is the case even though mobility control for rough terrain2and artificial intelligence for
understanding human speech3,4and behavior have improved drastically in recent years. What is
the critical difference that distinguishes people from human-made machines?

1Roomba. iRobot Corporation. Available online at: https://www.irobot.com/
2Atlas. Boston Dynamics. Available online at: https://www.bostondynamics.com/
3Amazon Echo. Amazon.com, Inc. Available online at: https://www.amazon.com/dp/B00X4WHP5E
4Google Home. Google LLC. Available online at: https://store.google.com/product/google_home
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We think that an important function that is currently missing
from robotic systems is a way to create behavior from symbolized
information. For instance, when walking, we deliberately attend
to symbolized behavioral purposes such as “walk faster” and
“turn right” or more symbolic forms such as “go to the station.”
The detailed control signals that create such motion, such as
joint trajectories and muscle activations, are then generated
automatically.

It is said that these automatic control signals are created by
the activities of local neural systems including the cerebellum
and spinal cord. In our daily lives, we attend only to symbolized
behavioral purposes that are highly specialized. The appropriate
behavior and detailed control signals that achieve those purposes
are then chosen according to the prevailing situation and the
surrounding environment. If we could share such symbolized
behavioral purposes with robots, and if the robots and we
could create the appropriate behavior independently according
to not only the surroundings but also the features of our
respective functions, then we would feel that the robots
are really our partners. Therefore, generating behavior from
symbolized purpose could be an important way to assess the
extent to which robots could be our partners with human-like
behavior.

In this paper, we discuss the process of creating behavior
from symbolized behavioral purpose, focusing on creating
motor commands from simple behavioral targets through body–
environment interactions. There have been various attempts
to clarify the mechanisms that generate automatic motor
commands from symbolized purposes, an important approach
being a physiological one. Recently, Takei et al. (2017) reported
the existence of neurons in the spinal cords of monkeys that
commonly activate in association with various hand actions,
suggesting that a small control signal, with dimensionality lower
than the number of muscles, can encode complicated hand
motion.

Model-based approaches provide the conceptual basis for
the aforementioned physiological approach. A bow-tie structure
(Csete and Doyle, 2004; Zhao et al., 2006) has been proposed
to represent a biological control system whereby information
acquired from the environment is gradually symbolized to
reduce its dimensions, while control signals are created from
this symbolized information to increase their dimension. The
notions of muscle synergy (Bernstein, 1967; Tresch et al., 1999;
d’Avella et al., 2003; Chvatal et al., 2011; Alnajjar et al., 2013;
Barroso et al., 2014; Gonzalez-Vargas et al., 2015; Garcia et al.,
2018; Kogami et al., 2018) and joint synergy (Schenkman
et al., 1990; Latash, 2000; Yamasaki and Shimoda, 2016)
that represent the output side of this bow-tie structure are
prominent examples of estimating lower-dimensional signals
from observable signals such as electromyographic signals. The
sensor synergy representing the input side of the bow-tie
structure has been discussed regarding estimating sensor signals
from the environment (Ting, 2007; Latash, 2008; Alnajjar et al.,
2015).

Another important approach to clarifying the mechanisms
that generate automatic motor commands is the development
of artificial controllers that have the same features as those of

biological controllers. The autoencoders discussed in artificial
intelligence (Hinton and Salakhutdinov, 2006; Hosseini-Asl et al.,
2016) share the same idea as the bow-tie structure. Recently,
there have been various discussions about using autoencoders
to control robots (Noda et al., 2014; Finn et al., 2016; van Hoof
et al., 2016; Kondo and Takahashi, 2017). KullbackLeibler control
(Todorov, 2009) is an interesting task-dependent approach to
control robot (Uchibe and Doya, 2014; Matsubara et al., 2015)
with combination of control policies.

These computational approaches clarified that small
control signals, with dimensionality lower than the number
of motors, can represent behavioral features, suggesting
that lower-dimensional control signals play the role of
symbolized behavioral purposes. Shimoda et al. proposed
a bio-mimetic behavior-adaptation architecture known as
tacit learning (Shimoda and Kimura, 2010; Shimoda et al.,
2013; Hayashibe and Shimoda, 2014) and have used it to
generate bipedal walking from a roughly defined walking
gait (Shimoda et al., 2013), to control the wrist joint of
a forearm prosthesis in response to the wearer’s shoulder
movements (Oyama et al., 2016), and to control a lower-limb
exoskeleton robot in response to the wearer’s movements
(Shimoda et al., 2015). Through experiments on this tacit
learning adaptation, they established that two types of adaptation
process could work simultaneously to adapt the behavior to an
unorganized environment. One of these processes is selecting
appropriate behavior and the other is adapting reactive behavior
to unpredictable disturbances and small changes in body
parameters and environment without changing the behavioral
purpose.

Even though it has been established that it is important
for these two processes to operate in parallel, the conditions
of the controllers needed to realize such adaptation remain
under discussion. Herein, we advance this discussion by using
an artificial controller that can adapt the motor commands
to real-time changes in the symbolized purpose, and we
clarify the conditions for adapting in real time to both the
environment and the symbolized purpose. We begin in section 2
by designing a controller with tacit learning and that transfers
the control signals into a different control space know as
mechanical resonance mode space (MRM-space). In MRM-
space, the signals are used to control the mechanical resonance
modes of the robot. This makes it easy to understand how the
robot behavior changes when the control signal is changed in
MRM-space. In sections 3 and 4, we propose an adaptation
method in MRM-space using a two-degree-of-freedom (2DoF)
inverted pendulum, 27DoF humanoid robot, and the NAO
humanoid robot5, respectively. We show through simulation
and experiment that this controller can adapt the motion to the
environment. In section 5, we discuss the importance of body
mechanisms in the process of simultaneous adaptation and how
that process can be used to evaluate the human-like motion of a
robot.

5NAO. SoftBank Robotics. Available online at: https://www.ald.softbankrobotics.

com/en/robots/nao
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2. METHODS USED TO DESIGN A
CONTROL STRUCTURE

Transfer toMRM-space and behavior adaptation by tacit learning
are the key analytical methods of the present study. Because both
methods are discussed in detail elsewhere (mechanical resonance
mode Kry et al., 2009; tacit learning Shimoda and Kimura, 2010;
Shimoda et al., 2013; Hayashibe and Shimoda, 2014), we explain
their essential points only briefly herein.

2.1. Mechanical Resonance Mode
A mechanical resonance mode is defined by the position and
the condition of the robot joints. For instance, a 2DoF inverted
pendulum has two mechanical resonance modes as shown in
Figures 1A,B. A mechanical resonance mode is characterized
mathematically by mode vectors and eigenvalues. Writing the
equation of motion of a 2DoF inverted pendulum as

Mθ̈ + Kθ = 0 (1)

⇔ θ̈ = −M−1Kθ , (2)

where θ ∈ R2 implies the angles of the joints, the mode vectors
and eigenvalues are calculated by a singular-value decomposition
(SVD) ofM−1K :

M−1K H⇒

{

v1, v2 (mode vectors)

λ1, λ2 (eigenvalues)
, (3)

SVD

whereM ∈ R2×2 is the inertia matrix of the pendulum linearized
around θ = 0 and K ∈ R2×2 is a stiffness matrix that has
the spring coefficients of the joints on its main diagonal. The
first mode (v1) corresponds to the smallest eigenvalue (λ1) and
the second mode (v2) corresponds to the next-largest eigenvalue
(λ2). The mode vector represents the shape of the pendulum
oscillation.

The state variable θ of the pendulum can be represented as a
superposition of the mode vectors as follows:

θ = v1w1 + v2w2 =
[

v1 v2
] [

w1 w2

]T

∴ θ = Tw (⇔ w = T−1θ), (4)

where w1,w2 represent the weights of each mode vector and T

can be defined as a transfer matrix. We can define the weights of
the mode vectors as symbolized state variables in MRM-space.

The adjustment of the symbolized state variables is reflected in
the movement of individual joints by the transfer matrix. This is
much like the top-down process in people, namely changing one’s
behavior by means of symbolized information without having to
attend to the actions of individual joints.

2.2. Tacit Learning
Tacit learning is an adaptive learning method inspired by two
features of living beings. First, living beings can perform adaptive
behavior globally even though control is realized by only a
summation of local nerve-cell firings. Second, adaptive learning

FIGURE 1 | Modes of two-degree-of-freedom (2DoF) inverted pendulum and

27DoF humanoid robot: (A) first mode of pendulum (same-phase posture); (B)

second mode of pendulum (anti-phase posture); (C) first mode of robot

(bipedal leg swinging); (D) eighth mode (leg swinging on frontal plane).

and behavioral control are calculated in parallel; this is unlike
machine learning, whose calculation is divided into a learning
phase and an action phase.

To apply these features to artificial controller, action targets
and the concept of “reflex” are used in tacit learning. The
reflex plays a role in directing the movement of the controlled
system toward a state in situations in which the system does not
receive many environmental stimuli from a global perspective.
By enhancing the reflex by accumulating reflex commands,
the system can acquire a state autonomously through system–
environment interactions, where there are fewer environmental
stimuli without having to distinguish between the learning phase
and the action phase.

Other learning methods use behavioral functions or
teaching signals to adjust the controlled system behavior and
achieve adaptive behavior in a top-down manner. In that
sense, tacit learning can be defined as a bottom-up learning
process, adjusting the behavior through system–environment
interactions. However, it can control the system to achieve
adaptive behavior from a global perspective. Herein, we use tacit
learning to develop a bio-mimetic adaptation process.

3. STANDING BALANCE CONTROL WITH
2DOF INVERTED PENDULUM

In this section, we introduce the controller with tacit learning in
MRM-space and apply it to standing balance control of a 2DoF
inverted pendulum. We show that the tacit learning controller
can maintain balance against larger disturbances than the case
without learning.

3.1. Model of 2DoF Inverted Pendulum
Figure 2 shows the 2DoF inverted pendulum model used in this
simulation. Its equation of motion is

M(θ)θ̈ + g(θ , θ̇) = τ , (5)

where θ is a 2× 1 vector consisting of the joint angles, τ is a 2× 1
torque vector that affects each joint, and M(θ) is a 2 × 2 inertia
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matrix given by

M(θ)

=

[

I1 +m1a
2
1 + l21m2 + η + 2ξ cos θ2 η + ξ cos θ2

η + ξ cos θ2 η

]

,
(6)

where a1 = l1/2, a2 = l2/2, η = I2 + m2a
2
2, ξ = l1m2a2, and

g(θ , θ̇) is

g(θ , θ̇)

=

[

−ξ (2θ̇1 + θ̇2)θ̇2 sin θ2 − g1 sin θ1 − g2 sin(θ1 + θ2)

ξ θ̇21 sin θ2 − g2 sin(θ1 + θ2)

]

,
(7)

where g1 = (m1a1 +m2l1)g, g2 = m2a2g, and g = 9.81 m/s2.

3.2. Standing Balance Control Structure
Figure 3 shows a standing balance controller designed by using
the transfer matrix T described in 4 and tacit learning. Terms θi
and τi are the angle and torque, respectively, of joint i. The torque
vector τ for each joint is

τ = TAT−11θ + TBT−11θ̇ + Tζm + ζ , (8)

τ =
[

τ1 τ2
]T

. (9)

1θ and 1θ̇ are

1θ =
[

θ ref − θ
]

,1θ̇ = −θ̇ , (10)

FIGURE 2 | Model of 2DoF inverted pendulum: (A) pendulum model in

simulator; (B) definitions of joint angles and system parameters. The pendulum

sits on a board that is moved horizontally by a force f [N], thereby imparting

disturbances to the pendulum.

FIGURE 3 | Block diagram for standing balance control of 2DoF inverted

pendulum; see section 3.2 for details.

where θ and θ̇ are state variables:

θ =
[

θ1 θ2
]T

, θ̇ =
[

θ̇1 θ̇2
]T

. (11)

θ ref is a reference for each joint:

θ ref =
[

θref 1 θref 2
]T

. (12)

Terms A and B are diagonal matrices:

A =

[

kp1 0
0 kp2

]

, B =

[

kd1 0
0 kd2

]

, (13)

where kp1 and kp2 are proportional (P) gains of the proportional-
derivative (PD) controller in MRM-space, kd1 and kd2 are
derivative gains of the PD controller in MRM-space, and T−1 is
the transfer matrix from joint space to MRM-space.

Term ζ is a vector that consists of the integration of τ as
follows:

ζ =

[

ζ1
ζ2

]

=

[

k1 0
0 k2

] [ ∫

τ1dt
∫

τ2dt

]

, (14)

where k1 and k2 are the coefficients of the integrators that
accumulate the joint torques and output the integrated values.
These accumulations correspond to tacit learning, and these
integrators adjust the individual joint torques and work to keep
the pendulum upright after disturbance through pendulum–
environment interaction, as in Shimoda et al. (2013).

Term ζm a vector that consists of the integration of ζ as
follows:

ζm =

[

ζm1

ζm2

]

=

[

0 0
km2 0

] [ ∫

ζ1dt
0

]

, (15)

where km2 is the coefficient of the integrator in MRM-space that
accumulates ζ1 and outputs the integrated values. km2 can change
the level of learning in standing balance control. km2 = 0 is
defined as “without learning,” and km2 > 0 is defined as “with
learning.” ζm adjusts the movement of the second mode, which
we selected based on visual inspection of the movement of all
modes. Because any disturbance has a pronounced effect on
joint 1, the torque of the second mode is adjusted based on the
torque of joint 1.

The whole system can be expressed by combining (5) and (8)
as follows:

M(θ)θ̈ + g(θ , θ̇) = TAT−11θ + TBT−11θ̇

+ Tζm + ζ .
(16)

3.3. Standing Balance Control Simulation
and Results
The two mode vectors v1, v2 of the pendulum defined in Figure 2

are given as

v1 =

[

−0.9
−0.3

]

, v2 =

[

0.3
−0.9

]

, (17)
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As shown in Figures 3A,B, the first mode v1 represents same-
phase posture and the second mode v2 represents anti-phase
posture. The transfer matrix T is

T =

[

−0.9 0.3
−0.3 −0.9

]

. (18)

Standing balance control simulations are conducted as follows.

1. The pendulum is placed upright on a board that can move
horizontally.

2. The board is moved for 0.2 s with the disturbance f [N].
3. A simulation is ended once the height of the center of

mass(CoM) of the pendulum falls below 0.2 m or the
pendulum become upright.

We conduct simulations with each of f = 170, · · · , 210 N. The
gains are kp1 = 22.0, kd1 = 21.0, kp2 = 22.0, kd2 = 21.0, k1 =

1.0 × 10−3, and k2 = 1.0 × 10−3. The references are θref 1 =

θref 2 = 0.0.
Table 1 gives the results of whether the pendulum falls down

in the process of trying to maintain standing balance. The
pendulum is clearly more stable with tacit learning in MRM-
space than without tacit learning in MRM-space.

Figure 4 shows an overview of standing balance control
simulations without and with learning in MRM-space. The
pendulum CoM falls lower in the process of regaining balance
when tacit learning is applied in MRM-space. Figure 5 shows

TABLE 1 | Stability changes due to different coefficients.

Disturbance Without learning With learning

km2 = 0.0 km2 = 5.0 × 10−4

170 ≤ f ≤ 184 [N] Stable Stable

185 ≤ f ≤ 204 [N] Fallen Stable

205 ≤ f [N] Fallen Fallen

FIGURE 4 | Overview of standing balance control simulation: (A) without

learning; (B) with learning. “Without learning” means that tacit learning is

applied to only joint space, and “With learning” means that tacit learning is

applied to joint space and MRM-space. The red dotted line is the general

trajectory of the center of mass (CoM) of the pendulum in the process of

regaining balance after a disturbance. The CoM falls lower while regaining

balance with tacit learning in MRM-space.

the trajectories of joints 1 and 2 in the process of regaining
balance. In the case without learning in MRM-space shown in
Figure 5A, the pendulum becomes upright after the disturbance
by moving joints 1 and 2 in phase. By contrast, in the case with
learning in MRM-space shown in Figure 5B, joints 1 and 2 move
in anti-phase.

Figure 6 shows the relationship between the disturbance and
the energy consumption E per unit time, which is calculated from

E =

∑T
t= 0(τ1

2 + τ2
2)

T
, (19)

where T is the time until the pendulum becomes upright.We also
calculate E when the simulation is conducted with tacit learning

FIGURE 5 | Trajectories of joints 1 and 2 while regaining balance in the

simulation: (A) without learning; (B) with learning. The gray areas are where the

joints move in phase, the white areas are where they move in anti-phase.

Joints 1 and 2 move in phase while regaining balance without tacit learning in

MRM-space. Joints 1 and 2 move in anti-phase while regaining balance with

tacit learning in MRM-space. The disturbance is f = 184 N. The gain of tacit

learning in MRM-space is km2 = 5.0× 10−4.
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FIGURE 6 | Relationship between energy consumption per unit time and

disturbance in the simulation. Each square represents the maximum

disturbance for which the pendulum can become upright. For example, the

pendulum cannot become upright against a disturbance of 185 N or more

without learning in MRM-space. Both the energy consumption per unit time

and the stability against disturbance increase with the coefficient of tacit

learning in MRM-space.

in MRM-space by using different integral coefficients, namely
km2 = 5.0× 10−6 and 5.0× 10−5.

The pendulum can become upright against a larger
disturbance with learning in MRM-space than without learning
in MRM-space. The size of disturbance that the pendulum
can withstand without falling over increases with the integral
coefficient km2 for tacit learning. However, E also increases with
km2.

3.4. Standing Balance Control Experiment
and Results
We conducted an experiment on a real 2DoF inverted pendulum
with the same block diagram as in the simulation. The transfer
matrix was calculated based on the physical parameters of
the pendulum, whereas the gains in the block diagram were
determined by trial and error. The experimental conditions can
be seen in the Supplementary Video. Figure 7A shows the actual
2DoF inverted pendulum. Figure 7B shows the trajectories of
joints 1 and 2 in the process of regaining balance. The pendulum
becomes upright by moving joints 1 and 2 in anti-phase, as in the
simulation with tacit learning in MRM-space.

3.5. Discussion of Standing Balance
Control
The pendulum can remain upright against larger disturbances as
the coefficient of tacit learning in MRM-space is increased (see
Figure 6). However, a problem is that the energy consumption
per unit time in same disturbance also increases as the coefficient
is increased. Another problem is that, although we did not
analyze the stability of this system, too large an integral tacit

learning coefficient makes the system unstable (see Shimoda
et al., 2012). To regain balance efficiently after a disturbance, it
is necessary to change the tacit learning coefficient according to
the disturbance.

It is well-known that people change their standing balance
strategies between ankle and hip strategies (Horak and Nashner,
1986; Runge et al., 1999; Robinovitch et al., 2002) according to the
prevailing disturbances. Each strategy is shown in Figure 8. The
ankle strategy is a standing balance control method in which the
person mainly moves the ankle joints in response to a relatively
small disturbance, whereas the hip strategy is a standing balance
control method in which the person moves the hip and ankle
joints in anti-phase in response to a larger disturbance. The
movements involved in the hip strategy are similar to those of the
2DoF pendulum when tacit learning is applied in MRM-space.
It is interesting that our method of adjusting signals in MRM-
space with tacit learning has something in commonwith a human
strategy.

4. BIPEDAL WALKING CONTROL ON FLAT
PLANE WITH 27DOF HUMANOID ROBOT

In section 3, we discussed the use of standing balance control of
allow a 2DoF pendulum to react to disturbances. In this section,
we add a “top-down” signal to include intentional behavioral
changes. We apply the same control strategies to a 27DoF
humanoid robot walking control with the added top-down signal.
The weight and the length of segments of the robot is decided
based on the NASA biometric research (NASA). We show
through simulation and experiment that the signal added to the
controller in MRM-space plays the role of behavioral intentions
to change walking direction while maintaining walking balance.

4.1. Bipedal Walking Control Structure
Figure 9 shows a bipedal walking controller designed by using

the transfer matrix T and tacit learning. Terms θ , θ̇ ∈ R27

are vectors of state variables. Terms θ ref ∈ R27 is a vector of

angle references. The torque vector τ ∈ R27 for each joint is
represented as

τ = TAT−11θ + TBT−11θ̇ + Tc+ ζ , (20)

τ =
[

τ1 · · · τ27
]T

, (21)

ζ =

diag(
[

0 · · · klankle krankle · · · 0
]

)

∫

τdt,
(22)

where ζ is a vector that consists of the integral values of tacit
learning, and tacit learning is applied to only the left and right
ankle joints. The balance in the sagittal plane is maintained by
tacit leaning, as in Shimoda et al. (2013). Terms klankle and krankle
are the integral coefficients for the left and right ankle joints,

respectively. Terms 1θ and 1θ̇ are

1θ =
[

θ ref − θ
]

, 1θ̇ = −θ̇ . (23)
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FIGURE 7 | (A) 2DoF inverted pendulum. (B) Trajectories of joints 1 and 2 in the process of regaining balance in the experiment. Each point is supplemented with a

spline curve. The gray areas are where the joints move in phase, the white areas are where they move in anti-phase. Joints 1 and 2 move in anti-phase in the process

of regaining balance, as in the simulation with tacit learning.

FIGURE 8 | Standing balance control strategies of a person (Horak and

Nashner, 1986; Runge et al., 1999; Robinovitch et al., 2002). (A) Ankle

strategy: the person mainly moves the ankle joints and can balance against

small disturbances only. (B) Hip strategy: the person moves the hip and ankle

joints in anti-phase and can balance against larger disturbances. The

participant of this figure gave informed consent to appear on the current work.

Terms A and B are diagonal matrices:

A = diag(
[

kp1 kp2 · · · kp27
]

),

B = diag(
[

kd1 kd2 · · · kd27
]

),
(24)

where kp1, · · · , kp27 are values obtained by multiplying the
eigenvalues of each mode by 10, and kd1, · · · , kd27 are values
obtained by multiplying the eigenvalues of each mode by 0.1. The
eigenvalues are given by the mechanical resonance mode of the
robot.

Term c is a vector that consists of the constant value of the
torque of the eighth mode and is given by

c =
[

0 · · · ξ8 · · · 0
]T

, (25)

FIGURE 9 | Block diagram for bipedal walking control of 27DoF robot; see

section 4.1 for details.

where ξ8 is a constant that can be adjusted manually.
The transfer matrix T ∈ R27×27 of the 27DoF robot

can be calculated using the method given in section 2.1. The
movement of all modes can be seen in the Supplementary Video.
In controlling the robot behavior, we focus on two specific
modes from all the modes, namely the first and eighth modes
(see Figures 1 C,D). We expect to realize two specific types
of walking. Adjusting only the signal of the first mode while
changing the P gain kp1 can make the robot change its walking
velocity on a flat plane. Adjusting the signal of the eighth mode
with the constant value c can make the robot turn left and right
on a flat plane with fixing kp1 for the robot to walk forward.

4.2. Bipedal Walking Simulation and
Results
Bipedal walking is performed as shown in Figure 10A, with one
cycle of walking consisting of eight steps. The integral coefficients
for the left and right ankle joints are klankle = krankle = 1.0e − 4.
The references for each joint at each step in the simulation are
described in Table 2. After finishing one cycle, the reference
returns to the beginning of the cycle.

Frontiers in Neurorobotics | www.frontiersin.org 7 July 2018 | Volume 12 | Article 43

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Okajima et al. Human-Like Movement From Symbolized Information

FIGURE 10 | (A) Posture of each target set, for which the joints enclosed by

dashed circles are controlled. Steps 5–7 (not shown) are the bifrontally

symmetric postures of steps 1–3. Steps 4 and 8 (not shown) involve waiting

for a time while holding the posture of the corresponding previous target set.

References for joints are given in Table 2. (B) Overview of walking simulation

for adjusting the eighth mode. By adding positive constant values to the eighth

mode, the robot can turn left.

TABLE 2 | Target set for bipedal walking control simulation.

Target angle [rad] ×10−1

Step Description Left leg Right leg

Step 0 Standing posture – –

Hip Hip

Step 1 Balance on left leg (−0.1) (0.1)

Hip Knee

Step 2 Right leg up – (−9.0) (9.0)

Hip Knee

Step 3 Right leg down – (−4.5) (4.5)

Step 4 Balance on both leg – –

Hip Hip

Step 5 Balance on right leg (0.1) (−0.1)

Hip Knee

Step 6 Left leg up (−9.0) (9.0) –

Hip Knee

Step 7 Left leg down (−4.5) (4.5) –

Step 8 Balance on both leg – –

Each step shifts to the next step under specific conditions.
When the robot raises a foot, that step shifts to the next step
when a knee joint angle of the robot equals the reference of the
knee joint angle. When the robot puts a foot down, that step

shifts to the next step when the sole of the foot touches the
ground. If the robot falls down while walking, the robot is moved
to the initial position while holding the integral values of tacit
learning.

(i) Walking forward and backward
Figure 11A shows time series of the CoM position in the
direction in which the robot walks and the P gain kp1 used to
adjust the movement of the first mode. In the early stage of
walking, the P gain is set as kp1 = 270.0. It can be seen that the
robot walks forward and backward according to the adjustment
of the P gain. An overview of the simulation can be seen in the
Supplementary Video.

(ii) Turning left and right
Figure 10B shows an overview of the walking simulation adjust
the movement of the eighth mode by adding positive constant
values to the signal of the eighth mode with an appropriate P gain
kp1 to walk forward. The robot can be seen turning left.

Figure 11B shows the trajectories of the CoM of the robot
from the top view; the robot walks from the left of the figure
to the right with teh appropriate P gain kp1. From Figure 11B,
it can be seen that the walking direction is changed depending
on the constant value used to adjust the movement of the eighth
mode. The robot turns more as the constant value is increased.
An overview of the simulation can be seen in the Supplementary
Video.

Figure 11C shows the trajectories of the CoM of the robot
from the top view; the robot walks from the left of the figure
to the right with a fixed constant value ξ8 = 4.5e3. From
Figure 11C, it can be seen that P gain kp1 is a key factor
that affects the velocity in turning behaviors, and the walking
direction is changed.

4.3. Bipedal Walking Experiment and
Results
We conducted not only simulations but also walking experiments
by using an actual robot, namely the humanoid robot NAOmade
by Aldebaran. This has 25DoF, and we can control the angle of
each of its joints. NAO is controlled by angle inputs rather than
torque inputs. We designed a control structure that generates
reference joint angles by using the transfer matrix T.

The reference joint angle for a wide variety of walking can be
described as

φ′
= T†



























kp1
1.0 0

. . .

0 1.0











T†−1
φ +

















0.0
...

α8

...
0.0

































(26)

if kp1 = 1.0 and α8 = 0.0, φ′
= φ,

where φ ∈ R25 is a vector that consists of joint-angle references
for walking, and φ′ ∈ R25 is an adjusted vector. Term T† is a
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FIGURE 11 | Trajectory and time series of CoM position in turning and walking forward and backward in simulation: (A) Time series of CoM position in the direction in

which the robot walks and the P gain of the first mode in the simulation. In the early stage of walking, the P gain is set as kp1 = 270.0. The robot walks forward and

backward according to changes in the P gain of the first mode. (B) Trajectories of robot CoM in walking simulation with adjusting the movement of the eighth mode.

The robot walks from the left to the right of the figure. The black line is a trajectory of the robot walking forward without adjusting the movement of the eighth mode.

The walking direction is changed depending on the constant value. The robot turns more as the constant value is increased. (C) Directions of robot CoM in turning

with different walking velocities. Solid lines represent walking directions. The constant value is set as ξ8 = 4.5e3. Walking velocity can be changed in turning behavior

with different P gain kp1, and the walking direction is affected by walking velocity.

TABLE 3 | Target set for bipedal walking control experiment.

Target angle [rad]

Step Description Left leg Right leg

Step 0 Standing posture – –

Hip Hip

Step 1 Balance on left leg (−0.1e− 1) (0.1e− 1)

Hip Knee

Step 2 Right leg up – (−0.8) (1.0)

Hip Knee

Step 3 Right leg down – (−0.4) (0.7)

Step 4 Balance on both leg – –

Hip Hip

Step 5 Balance on right leg (0.1e− 1) (−0.1e− 1)

Hip Knee

Step 6 Left leg up (−0.8) (1.0) –

Hip Knee

Step 7 Left leg down (−0.4) (0.7) –

Step 8 Balance on both leg – –

transfer matrix modified from the transfer matrix T to fit the
DoF of NAO. Term kp1 works like the P gain in the simulation of
walking forward and backward.Term α8 works like the constant
value in the simulation of turning. Walking balance is acquired
by applying tacit learning to joint space in the same way as 2DoF
inverted pendulum postural control.

Experiments are conducted using the same scheme as that
shown in Figure 10A. The target joint angles at each step in the
simulation are described in Table 3. Each step shifts to the next
step under specific conditions. When NAO raises a foot, that step
shifts to the next step when the knee joint angle of the robot
equals the reference knee joint angle. When NAO puts a foot
down, that step shifts to the next step when the sole of the foot
touches the ground.

(i) Walking forward and backward

FIGURE 12 | Time series of left hip and left knee joint angles in an experiment

involving walking forward and backward. The P gain kp1 for adjusting the

movement of the first mode changes as follows: kp1 = 1.0 for 0–150 s,

kp1 = 1.1 for 150–240 s, and kp1 = 1.0 for 240–250 s. NAO walks forward for

0–150 s and backward for 150–240 s. When walking is switched from forward

to backward by adjusting the movement of the first mode, the hip joint angle

decreases and the knee joint angle increases. (A) Left hip angle. (B) Left knee

angle.

NAO can walk forward and backward when we adjust only
the movement of the first mode by adjusting its gain. An
overview of the experiment can be seen in the Supplementary
Video. Figure 12 shows time series of the left hip joint and left
knee joint angles while walking forward and backward. When
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FIGURE 13 | Overview of walking experiment with NAO, and CoM and foot

trajectories when NAO turns left and right in the experiment. (A) Overview of

walking experiment with NAO. (B) Turning left: NAO can turn left when the

constant value α8 for adjusting the movement of the eighth mode is positive.

(C) Turning right: NAO can turn right when the constant value α8 for adjusting

the movement of the eighth mode is negative. The participant of this figure

gave informed consent to appear on the current work.

walking is switched from forward to backward by adjusting
the movement of the first mode, the hip joint angle decreases
and the knee joint angle increases (see around 150 s in Figure 12).

(ii) Turning right and left
Figure 13A shows NAO turning left adjust the movement of the
eighth mode by adding a positive constant value to the signal of
the eighth mode with an appropriate P gain kp1 to walk forward.
Figures 13B,C shows the trajectories of the CoM and feet when
the movement of the eighth mode is adjusted with positive and
negative constant values. Figure 14 shows time series of the knee
angles when NAO turns left and right.

NAO can turn left and right by adjusting the movement
of the eighth mode, as in the simulation. As shown in
Figure 14A, the amplitude of the left knee joint angle is
bigger than that of the right knee joint angle in adjusting the
movement of the eighth mode by the constant value α8 =

−25.0, whereupon NAO turns left. The converse holds in
Figure 14B.

4.4. Discussion of Bipedal Walking Control
The robot NAO could turn left and right by adjusting the
movement of the eighth mode, that is, adjusting the bending of
the robot and NAO at the waist on the frontal plane by adjusting

FIGURE 14 | Time series of knee joint angle in turning experiment: (A) turning

right; (B) turning left. When NAO turns right, the amplitude of the left knee joint

angle is bigger than that of the right knee joint angle in adjusting the movement

of the eighth mode by the constant value α8 = −25.0. When the constant

value is negative, NAO turns left.

the constant value. Adjusting the movement of the eighth mode
deflected the CoM to the left-hand or right-hand side of the
body, whereupon one foot took a larger step than did the other
foot. This phenomenon can be confirmed from the fact that the
amplitude of the left knee joint angle was bigger than that of the
right knee joint angle (see Figure 14A).

The robot and NAO could walk forward and backward by
adjusting the movement of the first mode. The robot and NAO
differed in how the gain was adjusted, but we consider this
to be because the gains of the other modes differed between
the robot and NAO. When the movement of the first mode is
adjusted, the degree to which the legs are opened is adjusted,
whereupon the position at which the foot touches the ground can
be adjusted. This can be confirmed from the fact that the hip joint
angle decreases and the knee joint angle increases when walking
switches from forward to backward (see Figure 12).

It is normally difficult to make a robot walk in a wide variety of
ways because that necessitates designing a plurality of controllers
and preparing references concerning each combination of
individual joints. Instead, our method realizes turning and
walking forward and backward smoothly by adjusting a few
symbolized parameters in MRM-space without having to care
about each combination of 27 joints and switching controllers.
This is because there is a pattern of movements according to the
mode, and the pattern to adjust is easy to understand visually.

A person can change behavior while caring intentionally only
about “turn left and right” or “forward and backward.” Likewise,
ourmethod can adjust signals and realize behavior without caring
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FIGURE 15 | Neuro-synergy system concept. (A) One layer. This is a schematic diagram that is used in the simulations and experiments. T−1 plays the role of

integrating complex signals from the environment and generating semantic information, and T plays the role of converting semantic information to specific control

signals. In this paper, standing balance and walking control is realized by adjusting part of the signals in a transfer space. (B) Two layers. Part of the integrated signals

is integrated, and an upper layer is formed. Control and adjustment are conducted in the upper layer, and the output signals from the upper layer play the role of

adjusting in the lower layer. (C) Three layers. The layer step-up is accumulated to form a larger network, and we can produce various behaviors from the

more-symbolized behavioral target.

about each joint, which is important in considering human-like
movement in the robot under consideration.

5. DISCUSSION

As discussed in section 1, the aim of this paper is to clarify
the mechanisms of generating automatic motor commands to
achieve a symbolized behavioral purpose. Our approach is to
develop an artificial controller that embodies those mechanisms
and derive the important features of that function to assess the
extent to which the robot behavior is human-like.

We reasoned that the key problem in developing a
controller with those mechanisms would be realizing bio-
mimetic adaptation with two-way behavioral adaptation. The
first way is selecting the appropriate behavior that progresses in
a top-down manner, and the second is adjusting the behavior
according to the environment, which is a bottom-up process that
progresses through body–environment interactions.

In the preliminary study, we discussed the standing balance
control of a 2DoF inverted pendulum to introduce our
control strategies, focusing only on the bottom-up adaptation
process. In our control strategy, the control signals to each
joint are transferred to another space computed by using
the mechanical resonance modes, whereby we can easily
understand the behavioral pattern that each control signal
creates. We applied tacit learning in MRM-space and developed
the controller to maintain standing against various levels of

disturbance. The simulation and experimental results showed
that the standing balance control capability was increased when
the 2DoF inverted pendulum was controlled using MRM-
space, suggesting that the simple adaptation mechanism is
enough to improve the behavioral performance of standing
balance when behavior control is conducted in a space
where we can set the direction of behavior by adjusting to
the change of the disturbance. The similarities between the
mechanical resonance modes used in this system and the
hip and ankle motion strategies of people must be another
indication of the importance of reacting to a wide range of
disturbances in a space in which the body parameters are well
represented.

In the bipedal walking study using NAO, we discussed two-
way adaptation. To represent the top-down process in which
the behavioral purpose is selected, we chose the appropriate
resonance mode with which to adjust the behavior to the desired
one. As described in Figure 13, when we adjust the parameter
of the eighth mode, the robot begins to turn left and right while
maintaining walking balance. Walking balance was maintained
by tacit learning applying the method in Shimoda et al. (2013) to
joint space in the same way as 2DoF inverted pendulum control
as a bottom-up process. In the simulation and the experiments,
we succeeded in changing the behavior to turn left/right and go
forward/backward by stimulating differentmechanical resonance
modes.

We consider that the signals added to the specified mode
control can be treated as symbolized behavioral purpose in
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our study. The detailed commands to the joint control were
created in two processes, namely, transferring the control
signal from MRM-space to joint space, and tacit learning for
maintaining walking balance while reacting to environmental
inputs. Therefore, these results suggest that one-dimensional
signal change can create the complicated combinations of the
25DoF of NAO required to change the behavior when the
appropriate mode is stimulated.

Joint control is much more complicated in people than it
is in robots because complicated combinations of muscles are
required in the former. The notion of muscle synergy introduced
in section 1 shares the same features as those of the mechanical
resonance mode used in our method for robot control because
the muscle-synergy space represents the behavioral features of
body mechanisms and contributes to adjusting behavior in our
case by using lower-dimensional signals.

These results and discussion suggest that transferring the
signals to the appropriate control space is the key process for
reducing the complexity of the signals from the environment.
Discussing muscle synergy in a human controller and the
mechanical resonance mode is only one step to the final output.
If such steps were to be accumulated to form a larger network as
described in Figure 15, we could form various behaviors from the
more-symbolized behavioral target such as “go to the station.”

We reason that the extent to which a symbolized target
that is represented by the lower-dimensional signals is used
to create the robot behavior is the critical assessment for
evaluating the extent to which the robot behavior is human-
like. The results in this paper are just one step up from pure
motor-control signals, implying far from human-like behavior.
Further discussion is required to elevate the proposed system
to using more-symbolized behavioral targets such as “go to the
station.” A key problem is automatic creation of the mechanical
resonance mode. Non-linear transfer for more complicated
environment is another important problem. Even in the control
of human behavior, the process of creating muscle synergy
remains mysterious. We are now on the way to clarifying the

process to a morehierarchical system in both physiological and
artificial ways.
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