503 research outputs found

    Ready for O4 II: GRANDMA Observations of Swift GRBs during eight-weeks of Spring 2022

    Full text link
    We present a campaign designed to train the GRANDMA network and its infrastructure to follow up on transient alerts and detect their early afterglows. In preparation for O4 II campaign, we focused on GRB alerts as they are expected to be an electromagnetic counterpart of gravitational-wave events. Our goal was to improve our response to the alerts and start prompt observations as soon as possible to better prepare the GRANDMA network for the fourth observational run of LIGO-Virgo-Kagra (which started at the end of May 2023), and future missions such as SM. To receive, manage and send out observational plans to our partner telescopes we set up dedicated infrastructure and a rota of follow-up adcates were organized to guarantee round-the-clock assistance to our telescope teams. To ensure a great number of observations, we focused on Swift GRBs whose localization errors were generally smaller than the GRANDMA telescopes' field of view. This allowed us to bypass the transient identification process and focus on the reaction time and efficiency of the network. During 'Ready for O4 II', 11 Swift/INTEGRAL GRB triggers were selected, nine fields had been observed, and three afterglows were detected (GRB 220403B, GRB 220427A, GRB 220514A), with 17 GRANDMA telescopes and 17 amateur astronomers from the citizen science project Kilonova-Catcher. Here we highlight the GRB 220427A analysis where our long-term follow-up of the host galaxy allowed us to obtain a photometric redshift of z=0.82±0.09z=0.82\pm0.09, its lightcurve elution, fit the decay slope of the afterglows, and study the properties of the host galaxy

    Multi-band analyses of the bright GRB~230812B and the associated SN2023pel

    Full text link
    GRB~230812B is a bright and relatively nearby (z=0.36z =0.36) long gamma-ray burst that has generated significant interest in the community and therefore has been subsequently observed over the entire electromagnetic spectrum. We report over 80 observations in X-ray, ultraviolet, optical, infrared, and sub-millimeter bands from the GRANDMA (Global Rapid Advanced Network for Multi-messenger Addicts) network of observatories and from observational partners. Adding complementary data from the literature, we then derive essential physical parameters associated with the ejecta and external properties (i.e. the geometry and environment) and compare with other analyses of this event (e.g. Srinivasaragavan et al. 2023). We spectroscopically confirm the presence of an associated supernova, SN2023pel, and we derive a photospheric expansion velocity of v \sim 17×103\times10^3 km s1s^{-1}. We analyze the photometric data first using empirical fits of the flux and then with full Bayesian Inference. We again strongly establish the presence of a supernova in the data, with an absolute peak r-band magnitude Mr=19.41±0.10M_r = - 19.41 \pm 0.10. We find a flux-stretching factor or relative brightness kSN=1.04±0.09k_{\rm SN}=1.04 \pm 0.09 and a time-stretching factor sSN=0.68±0.05s_{\rm SN}=0.68 \pm 0.05, both compared to SN1998bw. Therefore, GRB 230812B appears to have a clear long GRB-supernova association, as expected in the standard collapsar model. However, as sometimes found in the afterglow modelling of such long GRBs, our best fit model favours a very low density environment (log10(nISM/cm3)=2.161.30+1.21\log_{10}({n_{\rm ISM}/{\rm cm}^{-3}}) = -2.16^{+1.21}_{-1.30}). We also find small values for the jet's core angle θcore=1.700.71+1.00 deg\theta_{\rm core}={1.70^{+1.00}_{-0.71}} \ \rm{deg} and viewing angle. GRB 230812B/SN2023pel is one of the best characterized afterglows with a distinctive supernova bump

    GRANDMA and HXMT Observations of GRB 221009A -- the Standard-Luminosity Afterglow of a Hyper-Luminous Gamma-Ray Burst

    Full text link
    GRB 221009A is the brightest Gamma-Ray Burst (GRB) detected in more than 50 years of study. In this paper, we present observations in the X-ray and optical domains after the GRB obtained by the GRANDMA Collaboration (which includes observations from more than 30 professional and amateur telescopes) and the Insight-HXMT Collaboration. We study the optical afterglow with empirical fitting from GRANDMA+HXMT data, augmented with data from the literature up to 60 days. We then model numerically, using a Bayesian approach, the GRANDMA and HXMT-LE afterglow observations, that we augment with Swift-XRT and additional optical/NIR observations reported in the literature. We find that the GRB afterglow, extinguished by a large dust column, is most likely behind a combination of a large Milky-Way dust column combined with moderate low-metallicity dust in the host galaxy. Using the GRANDMA+HXMT-LE+XRT dataset, we find that the simplest model, where the observed afterglow is produced by synchrotron radiation at the forward external shock during the deceleration of a top-hat relativistic jet by a uniform medium, fits the multi-wavelength observations only moderately well, with a tension between the observed temporal and spectral evolution. This tension is confirmed when using the extended dataset. We find that the consideration of a jet structure (Gaussian or power-law), the inclusion of synchrotron self-Compton emission, or the presence of an underlying supernova do not improve the predictions, showing that the modelling of GRB22109A will require going beyond the most standard GRB afterglow model. Placed in the global context of GRB optical afterglows, we find the afterglow of GRB 221009A is luminous but not extraordinarily so, highlighting that some aspects of this GRB do not deviate from the global known sample despite its extreme energetics and the peculiar afterglow evolution.Comment: Accepted to ApJL for the special issue, 37 pages, 23 pages main text, 6 tables, 13 figure

    Increasing the Astrophysical Reach of the Advanced Virgo Detector via the Application of Squeezed Vacuum States of Light

    Get PDF
    Current interferometric gravitational-wave detectors are limited by quantum noise over a wide range of their measurement bandwidth. One method to overcome the quantum limit is the injection of squeezed vacuum states of light into the interferometer’s dark port. Here, we report on the successful application of this quantum technology to improve the shot noise limited sensitivity of the Advanced Virgo gravitational-wave detector. A sensitivity enhancement of up to 3.2±0.1  dB beyond the shot noise limit is achieved. This nonclassical improvement corresponds to a 5%–8% increase of the binary neutron star horizon. The squeezing injection was fully automated and over the first 5 months of the third joint LIGO-Virgo observation run O3 squeezing was applied for more than 99% of the science time. During this period several gravitational-wave candidates have been recorded

    Quantum Backaction on kg-Scale Mirrors: Observation of Radiation Pressure Noise in the Advanced Virgo Detector

    Get PDF
    The quantum radiation pressure and the quantum shot noise in laser-interferometric gravitational wave detectors constitute a macroscopic manifestation of the Heisenberg inequality. If quantum shot noise can be easily observed, the observation of quantum radiation pressure noise has been elusive, so far, due to the technical noise competing with quantum effects. Here, we discuss the evidence of quantum radiation pressure noise in the Advanced Virgo gravitational wave detector. In our experiment, we inject squeezed vacuum states of light into the interferometer in order to manipulate the quantum backaction on the 42 kg mirrors and observe the corresponding quantum noise driven displacement at frequencies between 30 and 70 Hz. The experimental data, obtained in various interferometer configurations, is tested against the Advanced Virgo detector quantum noise model which confirmed the measured magnitude of quantum radiation pressure noise

    Advanced Virgo Plus: Future Perspectives

    Get PDF
    While completing the commissioning phase to prepare the Virgo interferometer for the next joint Observation Run (O4), the Virgo collaboration is also finalizing the design of the next upgrades to the detector to be employed in the following Observation Run (O5). The major upgrade will concern decreasing the thermal noise limit, which will imply using very large test masses and increased laser beam size. But this will not be the only upgrade to be implemented in the break between the O4 and O5 observation runs to increase the Virgo detector strain sensitivity. The paper will cover the challenges linked to this upgrade and implications on the detector's reach and observational potential, reflecting the talk given at 12th Cosmic Ray International Seminar - CRIS 2022 held in September 2022 in Napoli

    The Power Board of the KM3NeT Digital Optical Module: design, upgrade, and production

    Full text link
    The KM3NeT Collaboration is building an underwater neutrino observatory at the bottom of the Mediterranean Sea consisting of two neutrino telescopes, both composed of a three-dimensional array of light detectors, known as digital optical modules. Each digital optical module contains a set of 31 three inch photomultiplier tubes distributed over the surface of a 0.44 m diameter pressure-resistant glass sphere. The module includes also calibration instruments and electronics for power, readout and data acquisition. The power board was developed to supply power to all the elements of the digital optical module. The design of the power board began in 2013, and several prototypes were produced and tested. After an exhaustive validation process in various laboratories within the KM3NeT Collaboration, a mass production batch began, resulting in the construction of over 1200 power boards so far. These boards were integrated in the digital optical modules that have already been produced and deployed, 828 until October 2023. In 2017, an upgrade of the power board, to increase reliability and efficiency, was initiated. After the validation of a pre-production series, a production batch of 800 upgraded boards is currently underway. This paper describes the design, architecture, upgrade, validation, and production of the power board, including the reliability studies and tests conducted to ensure the safe operation at the bottom of the Mediterranean Sea throughout the observatory's lifespa

    Calibration of advanced Virgo and reconstruction of the detector strain h( t) during the observing run O3

    Get PDF
    The three advanced Virgo and LIGO gravitational wave detectors participated to the third observing run (O3) between 1 April 2019 15:00 UTC and 27 March 2020 17:00 UTC, leading to several gravitational wave detections per month. This paper describes the advanced Virgo detector calibration and the reconstruction of the detector strain h(t) during O3, as well as the estimation of the associated uncertainties. For the first time, the photon calibration technique as been used as reference for Virgo calibration, which allowed to cross-calibrate the strain amplitude of the Virgo and LIGO detectors. The previous reference, so-called free swinging Michelson technique, has still been used but as an independent cross-check. h(t) reconstruction and noise subtraction were processed online, with good enough quality to prevent the need for offline reprocessing, except for the two last weeks of September 2019. The uncertainties for the reconstructed h(t) strain, estimated in this paper in a 20-2000 Hz frequency band, are frequency independent: 5% in amplitude, 35 mrad in phase and 10 μs in timing, with the exception of larger uncertainties around 50 Hz

    Virgo Detector Characterization and Data Quality: results from the O3 run

    Full text link
    The Advanced Virgo detector has contributed with its data to the rapid growth of the number of detected gravitational-wave (GW) signals in the past few years, alongside the two Advanced LIGO instruments. First during the last month of the Observation Run 2 (O2) in August 2017 (with, most notably, the compact binary mergers GW170814 and GW170817), and then during the full Observation Run 3 (O3): an 11-months data taking period, between April 2019 and March 2020, that led to the addition of about 80 events to the catalog of transient GW sources maintained by LIGO, Virgo and now KAGRA. These discoveries and the manifold exploitation of the detected waveforms require an accurate characterization of the quality of the data, such as continuous study and monitoring of the detector noise sources. These activities, collectively named {\em detector characterization and data quality} or {\em DetChar}, span the whole workflow of the Virgo data, from the instrument front-end hardware to the final analyses. They are described in details in the following article, with a focus on the results achieved by the Virgo DetChar group during the O3 run. Concurrently, a companion article describes the tools that have been used by the Virgo DetChar group to perform this work.Comment: 57 pages, 18 figures. To be submitted to Class. and Quantum Grav. This is the "Results" part of preprint arXiv:2205.01555 [gr-qc] which has been split into two companion articles: one about the tools and methods, the other about the analyses of the O3 Virgo dat

    Virgo Detector Characterization and Data Quality during the O3 run

    Full text link
    The Advanced Virgo detector has contributed with its data to the rapid growth of the number of detected gravitational-wave signals in the past few years, alongside the two LIGO instruments. First, during the last month of the Observation Run 2 (O2) in August 2017 (with, most notably, the compact binary mergers GW170814 and GW170817) and then during the full Observation Run 3 (O3): an 11 months data taking period, between April 2019 and March 2020, that led to the addition of about 80 events to the catalog of transient gravitational-wave sources maintained by LIGO, Virgo and KAGRA. These discoveries and the manifold exploitation of the detected waveforms require an accurate characterization of the quality of the data, such as continuous study and monitoring of the detector noise. These activities, collectively named {\em detector characterization} or {\em DetChar}, span the whole workflow of the Virgo data, from the instrument front-end to the final analysis. They are described in details in the following article, with a focus on the associated tools, the results achieved by the Virgo DetChar group during the O3 run and the main prospects for future data-taking periods with an improved detector.Comment: 86 pages, 33 figures. This paper has been divided into two articles which supercede it and have been posted to arXiv on October 2022. Please use these new preprints as references: arXiv:2210.15634 (tools and methods) and arXiv:2210.15633 (results from the O3 run
    corecore