540 research outputs found

    Preparation and Characterization of Electrospun Food Biopackaging Films of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Derived From Fruit Pulp Biowaste

    Get PDF
    In the present study, circular economy based and potentially low-cost poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) was produced by mixed microbial cultures derived from fruit pulp, an industrial by-product of the juice industry. Three different chemical routes, namely non-extraction, extraction with sodium hypochlorite (NaClO), and extraction with chloroform, in combination with filtering and centrifugation, were explored to purify the biopolymer and find the most optimal solution for its processing via electrospinning. The resultant ultrathin fiber mats of the different extracted PHBV materials were thermally post-processed at different temperatures in order to obtain continuous films adequate for food packaging applications. The resultant films were characterized in terms of morphology, crystallinity as well as thermal, mechanical, and barrier properties. The results showed that extraction with both chloroform and NaClO with a post-treatment of filtering and centrifugation of the PHBV-containing biomass were necessary refining steps to allow its processing by electrospinning. In particular, the PHBV extracted with chloroform presented the highest degree of purity, resulting in more transparent films with lower wettability and higher flexibility. The here-formulated electrospun films made of biomass derived from biowaste exhibit great potential as interlayers or coatings for food biopackaging applications

    Preparation, characterization and antimicrobial properties of electrospun polylactide films containing Allium ursinum L. extract

    Get PDF
    [EN] Novel active films of polylactide (PLA) containing extract of Allium ursinum L. (AU), also called wild garlic, at 10 wt% were succesfully prepared by the electrospinning technology. Electrospinning of the AU-containing PLA solutions yielded fibers in the 1-2 mu m range with a beaded-like morphology, suggesting that the AU extract was mainly encapsulated in certain fiber regions. The resultant electrospun mats were then subjected to annealing at 135 degrees C to obtain continuous films of application interest in active packaging. The film cross-sections revealed that the AU extract was incorporated into the PLA matrix in the form of micro-sized droplets. The thermal properties showed that the AU extract addition plasticized the PLA matrix and also lowered its crystallinity degree as it disrupted the ordering of the PLA chains by hindering their folding into the crystalline lattice. Thermal stability analysis indicated that the natural extract positively contributed to a delay in thermal degradation of the biopolymer and it was thermally stable when encapsulated in the PLA film. The AU extract incorporation also produced a mechanical reinforcement on the electrospun PLA films and improved slightly the water barrier performance. Finally, a significant antimicrobial activity of the electrospun PLA films containing the natural extract was achieved against foodborne bacteria.This paper has been supported by the COST Action FP1405 Active and intelligent fiber-based packaging - innovation and market introduction (ActInPak), FOODStars project Food Product Development Cycle: Frame for stepping Up Research Excellence of FINS (Grant Agreement 692276), the Spanish Ministry of Science, Innovation, and Universities (MICIU, project AGL2015-63855-C2-1-R) and the EU H2020 project YPACK (reference number 773872). Torres-Giner also acknowledges MICIU for his Juan de la Cierva-Incorporacion contract (IJCI-2016-29675).Radusin, T.; Torres-Giner, S.; Stupar, A.; Ristic, I.; Miletic, A.; Novakovic, A.; Lagaron, JM. (2019). Preparation, characterization and antimicrobial properties of electrospun polylactide films containing Allium ursinum L. extract. Food Packaging and Shelf Life. 21:1-9. https://doi.org/10.1016/j.fpsl.2019.100357S1921Barile, E., Bonanomi, G., Antignani, V., Zolfaghari, B., Sajjadi, S. E., Scala, F., & Lanzotti, V. (2007). Saponins from Allium minutiflorum with antifungal activity. Phytochemistry, 68(5), 596-603. doi:10.1016/j.phytochem.2006.10.009Belovic, M., Mastilovic, J., & Kevresan, Z. (2014). Change of surface colour parameters during storage of paprika (Capsicum annuum L.). Food and Feed Research, 41(2), 85-92. doi:10.5937/ffr1402085bBenkeblia, N. (2004). Antimicrobial activity of essential oil extracts of various onions (Allium cepa) and garlic (Allium sativum). LWT - Food Science and Technology, 37(2), 263-268. doi:10.1016/j.lwt.2003.09.001Borges, A., Ferreira, C., Saavedra, M. J., & Simões, M. (2013). Antibacterial Activity and Mode of Action of Ferulic and Gallic Acids Against Pathogenic Bacteria. Microbial Drug Resistance, 19(4), 256-265. doi:10.1089/mdr.2012.0244Braun, B., Dorgan, J. R., & Dec, S. F. (2006). Infrared Spectroscopic Determination of Lactide Concentration in Polylactide:  An Improved Methodology. Macromolecules, 39(26), 9302-9310. doi:10.1021/ma061922aCasasola, R., Thomas, N. L., Trybala, A., & Georgiadou, S. (2014). Electrospun poly lactic acid (PLA) fibres: Effect of different solvent systems on fibre morphology and diameter. Polymer, 55(18), 4728-4737. doi:10.1016/j.polymer.2014.06.032Chen, Y., Lin, J., Fei, Y., Wang, H., & Gao, W. (2010). Preparation and characterization of electrospinning PLA/curcumin composite membranes. Fibers and Polymers, 11(8), 1128-1131. doi:10.1007/s12221-010-1128-zCherpinski, A., Torres-Giner, S., Cabedo, L., & Lagaron, J. M. (2017). Post-processing optimization of electrospun submicron poly(3-hydroxybutyrate) fibers to obtain continuous films of interest in food packaging applications. Food Additives & Contaminants: Part A, 34(10), 1817-1830. doi:10.1080/19440049.2017.1355115Cherpinski, A., Torres-Giner, S., Vartiainen, J., Peresin, M. S., Lahtinen, P., & Lagaron, J. M. (2018). Improving the water resistance of nanocellulose-based films with polyhydroxyalkanoates processed by the electrospinning coating technique. Cellulose, 25(2), 1291-1307. doi:10.1007/s10570-018-1648-zCushnie, T. P. T., & Lamb, A. J. (2005). Antimicrobial activity of flavonoids. International Journal of Antimicrobial Agents, 26(5), 343-356. doi:10.1016/j.ijantimicag.2005.09.002Daglia, M. (2012). Polyphenols as antimicrobial agents. Current Opinion in Biotechnology, 23(2), 174-181. doi:10.1016/j.copbio.2011.08.007Drosou, C. G., Krokida, M. K., & Biliaderis, C. G. (2016). Encapsulation of bioactive compounds through electrospinning/electrospraying and spray drying: A comparative assessment of food-related applications. Drying Technology, 35(2), 139-162. doi:10.1080/07373937.2016.1162797Fernandez, A., Torres-Giner, S., & Lagaron, J. M. (2009). Novel route to stabilization of bioactive antioxidants by encapsulation in electrospun fibers of zein prolamine. Food Hydrocolloids, 23(5), 1427-1432. doi:10.1016/j.foodhyd.2008.10.011Figueroa-Lopez, K. J., Vicente, A. A., Reis, M. A. M., Torres-Giner, S., & Lagaron, J. M. (2019). Antimicrobial and Antioxidant Performance of Various Essential Oils and Natural Extracts and Their Incorporation into Biowaste Derived Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Layers Made from Electrospun Ultrathin Fibers. Nanomaterials, 9(2), 144. doi:10.3390/nano9020144Gamage, G. R., Park, H.-J., & Kim, K. M. (2009). Effectiveness of antimicrobial coated oriented polypropylene/polyethylene films in sprout packaging. Food Research International, 42(7), 832-839. doi:10.1016/j.foodres.2009.03.012Ilić, D., Ristić, I. S., Nikolić, L., Stanković, M., Nikolić, G., Stanojević, L., & Nikolić, V. (2011). Characterization and Release Kinetics of Allylthiosufinate and its Transforments from Poly(d,l-Lactide) Microspheres. Journal of Polymers and the Environment, 20(1), 80-87. doi:10.1007/s10924-011-0337-xIvanova, A., Mikhova, B., Najdenski, H., Tsvetkova, I., & Kostova, I. (2009). Chemical Composition and Antimicrobial Activity of Wild Garlic Allium ursinum of Bulgarian Origin. Natural Product Communications, 4(8), 1934578X0900400. doi:10.1177/1934578x0900400808Jin, G., Prabhakaran, M. P., Kai, D., Annamalai, S. K., Arunachalam, K. D., & Ramakrishna, S. (2013). Tissue engineered plant extracts as nanofibrous wound dressing. Biomaterials, 34(3), 724-734. doi:10.1016/j.biomaterials.2012.10.026Kayaci, F., Umu, O. C. O., Tekinay, T., & Uyar, T. (2013). Antibacterial Electrospun Poly(lactic acid) (PLA) Nanofibrous Webs Incorporating Triclosan/Cyclodextrin Inclusion Complexes. Journal of Agricultural and Food Chemistry, 61(16), 3901-3908. doi:10.1021/jf400440bKhoddami, A., Wilkes, M., & Roberts, T. (2013). Techniques for Analysis of Plant Phenolic Compounds. Molecules, 18(2), 2328-2375. doi:10.3390/molecules18022328Kriegel, C., Kit, K. M., McClements, D. J., & Weiss, J. (2008). Nanofibers as Carrier Systems for Antimicrobial Microemulsions. Part I: Fabrication and Characterization. Langmuir, 25(2), 1154-1161. doi:10.1021/la803058cKyung, K. H. (2012). Antimicrobial properties of allium species. Current Opinion in Biotechnology, 23(2), 142-147. doi:10.1016/j.copbio.2011.08.004Llana-Ruiz-Cabello, M., Pichardo, S., Baños, A., Núñez, C., Bermúdez, J. M., Guillamón, E., … Cameán, A. M. (2015). Characterisation and evaluation of PLA films containing an extract of Allium spp. to be used in the packaging of ready-to-eat salads under controlled atmospheres. LWT - Food Science and Technology, 64(2), 1354-1361. doi:10.1016/j.lwt.2015.07.057López de Dicastillo, C., Bustos, F., Guarda, A., & Galotto, M. J. (2016). Cross-linked methyl cellulose films with murta fruit extract for antioxidant and antimicrobial active food packaging. Food Hydrocolloids, 60, 335-344. doi:10.1016/j.foodhyd.2016.03.020López de Dicastillo, C., Nerín, C., Alfaro, P., Catalá, R., Gavara, R., & Hernández-Muñoz, P. (2011). Development of New Antioxidant Active Packaging Films Based on Ethylene Vinyl Alcohol Copolymer (EVOH) and Green Tea Extract. Journal of Agricultural and Food Chemistry, 59(14), 7832-7840. doi:10.1021/jf201246gMontava-Jordà, S., Quiles-Carrillo, L., Richart, N., Torres-Giner, S., & Montanes, N. (2019). Enhanced Interfacial Adhesion of Polylactide/Poly(ε-caprolactone)/Walnut Shell Flour Composites by Reactive Extrusion with Maleinized Linseed Oil. Polymers, 11(5), 758. doi:10.3390/polym11050758Pilić,.Pereira, A., Ferreira, I., Marcelino, F., Valentão, P., Andrade, P., Seabra, R., … Pereira, J. (2007). Phenolic Compounds and Antimicrobial Activity of Olive (Olea europaea L. Cv. Cobrançosa) Leaves. Molecules, 12(5), 1153-1162. doi:10.3390/12051153Perry, C. C., Weatherly, M., Beale, T., & Randriamahefa, A. (2009). Atomic force microscopy study of the antimicrobial activity of aqueous garlicversusampicillin againstEscherichia coliandStaphylococcus aureus. Journal of the Science of Food and Agriculture, 89(6), 958-964. doi:10.1002/jsfa.3538Quiles-Carrillo, L., Montanes, N., Garcia-Garcia, D., Carbonell-Verdu, A., Balart, R., & Torres-Giner, S. (2018). Effect of different compatibilizers on injection-molded green composite pieces based on polylactide filled with almond shell flour. Composites Part B: Engineering, 147, 76-85. doi:10.1016/j.compositesb.2018.04.017Quiles-Carrillo, L., Montanes, N., Sammon, C., Balart, R., & Torres-Giner, S. (2018). Compatibilization of highly sustainable polylactide/almond shell flour composites by reactive extrusion with maleinized linseed oil. Industrial Crops and Products, 111, 878-888. doi:10.1016/j.indcrop.2017.10.062Quiles-Carrillo, L., Montanes, N., Lagaron, J. M., Balart, R., & Torres-Giner, S. (2018). In Situ Compatibilization of Biopolymer Ternary Blends by Reactive Extrusion with Low-Functionality Epoxy-Based Styrene–Acrylic Oligomer. Journal of Polymers and the Environment, 27(1), 84-96. doi:10.1007/s10924-018-1324-2Radusin, T., Tomšik, A., Šarić, L., Ristić, I., Giacinti Baschetti, M., Minelli, M., & Novaković, A. (2018). Hybrid Pla/wild garlic antimicrobial composite films for food packaging application. Polymer Composites, 40(3), 893-900. doi:10.1002/pc.24755Rauha, J.-P., Remes, S., Heinonen, M., Hopia, A., Kähkönen, M., Kujala, T., … Vuorela, P. (2000). Antimicrobial effects of Finnish plant extracts containing flavonoids and other phenolic compounds. International Journal of Food Microbiology, 56(1), 3-12. doi:10.1016/s0168-1605(00)00218-xRíos, J. L., & Recio, M. C. (2005). Medicinal plants and antimicrobial activity. Journal of Ethnopharmacology, 100(1-2), 80-84. doi:10.1016/j.jep.2005.04.025Sobolewska, D., Podolak, I., & Makowska-Wąs, J. (2013). Allium ursinum: botanical, phytochemical and pharmacological overview. Phytochemistry Reviews, 14(1), 81-97. doi:10.1007/s11101-013-9334-0Su, Y., Zhang, C., Wang, Y., & Li, P. (2011). Antibacterial property and mechanism of a novel Pu-erh tea nanofibrous membrane. Applied Microbiology and Biotechnology, 93(4), 1663-1671. doi:10.1007/s00253-011-3501-2Sun, L., Zhang, C., & Li, P. (2011). Characterization, Antimicrobial Activity, and Mechanism of a High-Performance (−)-Epigallocatechin-3-gallate (EGCG)−CuII/Polyvinyl Alcohol (PVA) Nanofibrous Membrane. Journal of Agricultural and Food Chemistry, 59(9), 5087-5092. doi:10.1021/jf200580tSuppakul, P., Miltz, J., Sonneveld, K., & Bigger, S. W. (2003). Antimicrobial Properties of Basil and Its Possible Application in Food Packaging. Journal of Agricultural and Food Chemistry, 51(11), 3197-3207. doi:10.1021/jf021038tTomšik, A., Pavlić, B., Vladić, J., Ramić, M., Brindza, J., & Vidović, S. (2016). Optimization of ultrasound-assisted extraction of bioactive compounds from wild garlic (Allium ursinum L.). Ultrasonics Sonochemistry, 29, 502-511. doi:10.1016/j.ultsonch.2015.11.005Tomšik, A., Šarić, L., Bertoni, S., Protti, M., Albertini, B., Mercolini, L., & Passerini, N. (2019). Encapsulations of wild garlic (Allium ursinum L.) extract using spray congealing technology. Food Research International, 119, 941-950. doi:10.1016/j.foodres.2018.10.081Torres-Giner, S., Gimeno-Alcañiz, J. V., Ocio, M. J., & Lagaron, J. M. (2011). Optimization of electrospun polylactide-based ultrathin fibers for osteoconductive bone scaffolds. Journal of Applied Polymer Science, 122(2), 914-925. doi:10.1002/app.34208Torres-Giner, S., Pérez-Masiá, R., & Lagaron, J. M. (2016). A review on electrospun polymer nanostructures as advanced bioactive platforms. Polymer Engineering & Science, 56(5), 500-527. doi:10.1002/pen.24274Torres-Giner, S., Martinez-Abad, A., & Lagaron, J. M. (2014). Zein-based ultrathin fibers containing ceramic nanofillers obtained by electrospinning. II. Mechanical properties, gas barrier, and sustained release capacity of biocide thymol in multilayer polylactide films. Journal of Applied Polymer Science, 131(18), n/a-n/a. doi:10.1002/app.40768Torres-Giner, S., Wilkanowicz, S., Melendez-Rodriguez, B., & Lagaron, J. M. (2017). Nanoencapsulation of Aloe vera in Synthetic and Naturally Occurring Polymers by Electrohydrodynamic Processing of Interest in Food Technology and Bioactive Packaging. Journal of Agricultural and Food Chemistry, 65(22), 4439-4448. doi:10.1021/acs.jafc.7b01393Vega-Lugo, A.-C., & Lim, L.-T. (2009). Controlled release of allyl isothiocyanate using soy protein and poly(lactic acid) electrospun fibers. Food Research International, 42(8), 933-940. doi:10.1016/j.foodres.2009.05.005Wang, L.-F., & Rhim, J.-W. (2016). Grapefruit seed extract incorporated antimicrobial LDPE and PLA films: Effect of type of polymer matrix. LWT, 74, 338-345. doi:10.1016/j.lwt.2016.07.066Yang, F., Xu, C. Y., Kotaki, M., Wang, S., & Ramakrishna, S. (2004). Characterization of neural stem cells on electrospun poly(L-lactic acid) nanofibrous scaffold. Journal of Biomaterials Science, Polymer Edition, 15(12), 1483-1497. doi:10.1163/1568562042459733Yildirim, S., Röcker, B., Pettersen, M. K., Nilsen-Nygaard, J., Ayhan, Z., Rutkaite, R., … Coma, V. (2017). Active Packaging Applications for Food. Comprehensive Reviews in Food Science and Food Safety, 17(1), 165-199. doi:10.1111/1541-4337.12322Zhu, B., Li, J., He, Y., Yamane, H., Kimura, Y., Nishida, H., & Inoue, Y. (2004). Effect of steric hindrance on hydrogen-bonding interaction between polyesters and natural polyphenol catechin. Journal of Applied Polymer Science, 91(6), 3565-3573. doi:10.1002/app.1358

    On the Use of Gallic Acid as a Potential Natural Antioxidant and Ultraviolet Light Stabilizer in Cast-Extruded Bio-Based High-Density Polyethylene Films

    Get PDF
    This study originally explores the use of gallic acid (GA) as a natural additive in bio-based high-density polyethylene (bio-HDPE) formulations. Thus, bio-HDPE was first melt-compounded with two different loadings of GA, namely 0.3 and 0.8 parts per hundred resin (phr) of biopolymer, by twin-screw extrusion and thereafter shaped into films using a cast-roll machine. The resultant bio-HDPE films containing GA were characterized in terms of their mechanical, morphological, and thermal performance as well as ultraviolet (UV) light stability to evaluate their potential application in food packaging. The incorporation of 0.3 and 0.8 phr of GA reduced the mechanical ductility and crystallinity of bio-HDPE, but it positively contributed to delaying the onset oxidation temperature (OOT) by 36.5 °C and nearly 44 °C, respectively. Moreover, the oxidation induction time (OIT) of bio-HDPE, measured at 210 °C, was delayed for up to approximately 56 and 240 min, respectively. Furthermore, the UV light stability of the bio-HDPE films was remarkably improved, remaining stable for an exposure time of 10 h even at the lowest GA content. The addition of the natural antioxidant slightly induced a yellow color in the bio-HDPE films and it also reduced their transparency, although a high contact transparency level was maintained. This property can be desirable in some packaging materials for light protection, especially UV radiation, which causes lipid oxidation in food products. Therefore, GA can successfully improve the thermal resistance and UV light stability of green polyolefins and will potentially promote the use of natural additives for sustainable food packaging applications

    Antimicrobial activity of metal cation-exchanged zeolites and their evaluation on injection-molded pieces of bio-based high-density polyethylene

    Full text link
    [EN] In this study, three different natural types of unmodified zeolite (chabazite, mordenite, and faujasite) were initially characterized for their morphology, elemental composition, and antimicrobial activity against foodborne bacteria and fungi. The chabazite-type zeolite was selected due to its optimal morphology and lowest silicon to aluminum ratio (Si/Al). This was then solution exchanged with different combinations of silver (Ag+), copper (Cu2+), and zinc (Zn2+) ions to prepare single, binary, and ternary metal cation-modified zeolites. Antimicrobial results clearly indicated that Ag-based zeolites exhibited more antimicrobial activity than Cu- and Zn-based zeolites. Interestingly, the multi-ionic zeolite, that is, the ternary Ag-Cu-Zn-zeolite, was the most efficient antimicrobial sample in terms of the amount of added silver. In the last step, the obtained multi-ionic zeolite was, for the first time, incorporated at different weight amounts (1, 5, 10, and 15 wt%) into a bio-based high-density polyethylene (bio-HDPE) matrix by extrusion and shaped into pieces by injection molding. Novel sustainable polymer composite pieces with improved stiffness and hardness and high antimicrobial activity were obtained. These treated materials offer industrial relevance to control the growth of harmful microorganisms in hygiene applications related to the food industry.Spanish Ministry of Economy and Competitiveness, Grant/Award Number: Project MAT2014-59242-C2-1-R; Conselleria d'Educacio, Cultura i Esport - Generalitat Valenciana, Grant/Award Number: GV/2014/008Torres-Giner, S.; Torres, A.; Ferrándiz, M.; Fombuena, V.; Balart, R. (2017). Antimicrobial activity of metal cation-exchanged zeolites and their evaluation on injection-molded pieces of bio-based high-density polyethylene. Journal of Food Safety. 37(4). https://doi.org/10.1111/jfs.12348Se1234837

    Preparation and Characterization of Electrospun Pectin-Based Films and Their Application in Sustainable Aroma Barrier Multilayer Packaging

    Full text link
    [EN] Featured Application: The present study aims to develop novel pectin-based films by electrospinning. The here -prepared films were applied as aroma barrier interlayers between two biopolymer films to develop fully bio-based and biodegradable food packaging articles according to the principles of the Circular Economy. Pectin was first dissolved in distilled water and blended with low contents of polyethylene oxide 2000 (PEO2000) as the carrier polymer to produce electrospun fibers. The electrospinning of the water solution of pectin at 9.5 wt% containing 0.5 wt% PEO2000 was selected as it successfully resulted in continuous and non-defected ultrathin fibers with the highest pectin content. However, annealing of the resultant pectin-based fibers, tested at different conditions, developed films with low mechanical integrity, high porosity, and also dark color due to their poor thermal stability. Then, to improve the film-forming process of the electrospun mats, two plasticizers, namely glycerol and polyethylene glycol 900 (PEG(900)), were added to the selected pectin solution in the 2-3 wt% range. The optimal annealing conditions were found at 150 degrees C with a pressure of 12 kN load for 1 min when applied to the electrospun pectin mats containing 5 wt% PEO2000 and 30 wt% glycerol and washed previously with dichloromethane. This process led to completely homogenous films with low porosity and high transparency due to a phenomenon of fibers coalescence. Finally, the selected electrospun pectin-based film was applied as an interlayer between two external layers of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) by the electrospinning coating technology and the whole structure was annealed to produce a fully bio-based and biodegradable multilayer film with enhanced barrier performance to water vapor and limonene.This study was supported by the Turkish Scientific and Technological Research Council (TUBITAK) 2214-A International Research Fellowship Programme for PhD Students and by the Spanish Ministry of Science, Innovation, and Universities (MICIU) project numbers AGL2015-63855-C2-1-R. S.T.-G. is a recipient of a Juan de la Cierva¿Incorporación contract (IJCI-2016-29675) from MICIU.Balik, BA.; Argin, S.; Lagaron, JM.; Torres-Giner, S. (2019). Preparation and Characterization of Electrospun Pectin-Based Films and Their Application in Sustainable Aroma Barrier Multilayer Packaging. Applied Sciences. 9(23):1-24. https://doi.org/10.3390/app9235136S124923Ridley, B. L., O’Neill, M. A., & Mohnen, D. (2001). Pectins: structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry, 57(6), 929-967. doi:10.1016/s0031-9422(01)00113-3Mukhiddinov, Z. (2000). Isolation and structural characterization of a pectin homo and ramnogalacturonan. Talanta, 53(1), 171-176. doi:10.1016/s0039-9140(00)00456-2MOHNEN, D. (2008). Pectin structure and biosynthesis. Current Opinion in Plant Biology, 11(3), 266-277. doi:10.1016/j.pbi.2008.03.006Naqash, F., Masoodi, F. A., Rather, S. A., Wani, S. M., & Gani, A. (2017). Emerging concepts in the nutraceutical and functional properties of pectin—A Review. Carbohydrate Polymers, 168, 227-239. doi:10.1016/j.carbpol.2017.03.058Noreen, A., Nazli, Z.-H., Akram, J., Rasul, I., Mansha, A., Yaqoob, N., … Zia, K. M. (2017). Pectins functionalized biomaterials; a new viable approach for biomedical applications: A review. International Journal of Biological Macromolecules, 101, 254-272. doi:10.1016/j.ijbiomac.2017.03.029Bernhardt, D. C., Pérez, C. D., Fissore, E. N., De’Nobili, M. D., & Rojas, A. M. (2017). Pectin-based composite film: Effect of corn husk fiber concentration on their properties. Carbohydrate Polymers, 164, 13-22. doi:10.1016/j.carbpol.2017.01.031Yu, W.-X., Wang, Z.-W., Hu, C.-Y., & Wang, L. (2014). Properties of low methoxyl pectin-carboxymethyl cellulose based on montmorillonite nanocomposite films. International Journal of Food Science & Technology, 49(12), 2592-2601. doi:10.1111/ijfs.12590Silva, M. A. da, Bierhalz, A. C. K., & Kieckbusch, T. G. (2009). Alginate and pectin composite films crosslinked with Ca2+ ions: Effect of the plasticizer concentration. Carbohydrate Polymers, 77(4), 736-742. doi:10.1016/j.carbpol.2009.02.014Jantrawut, P., Chaiwarit, T., Jantanasakulwong, K., Brachais, C., & Chambin, O. (2017). Effect of Plasticizer Type on Tensile Property and In Vitro Indomethacin Release of Thin Films Based on Low-Methoxyl Pectin. Polymers, 9(12), 289. doi:10.3390/polym9070289Chaiwarit, T., Ruksiriwanich, W., Jantanasakulwong, K., & Jantrawut, P. (2018). Use of Orange Oil Loaded Pectin Films as Antibacterial Material for Food Packaging. Polymers, 10(10), 1144. doi:10.3390/polym10101144Ma, X., Chang, P. R., Yu, J., & Stumborg, M. (2009). Properties of biodegradable citric acid-modified granular starch/thermoplastic pea starch composites. Carbohydrate Polymers, 75(1), 1-8. doi:10.1016/j.carbpol.2008.05.020ARGIN, S., & GÜLERİM, M. (2019). Development of antimicrobial gelatin films with boron derivatives. TURKISH JOURNAL OF BIOLOGY, 43(1), 47-57. doi:10.3906/biy-1807-181Kowalczyk, D., & Baraniak, B. (2011). Effects of plasticizers, pH and heating of film-forming solution on the properties of pea protein isolate films. Journal of Food Engineering, 105(2), 295-305. doi:10.1016/j.jfoodeng.2011.02.037Kowalczyk, D., Gustaw, W., Świeca, M., & Baraniak, B. (2013). A Study on the Mechanical Properties of Pea Protein Isolate Films. Journal of Food Processing and Preservation, 38(4), 1726-1736. doi:10.1111/jfpp.12135Talja, R. A., Helén, H., Roos, Y. H., & Jouppila, K. (2007). Effect of various polyols and polyol contents on physical and mechanical properties of potato starch-based films. Carbohydrate Polymers, 67(3), 288-295. doi:10.1016/j.carbpol.2006.05.019Vieira, M. G. A., da Silva, M. A., dos Santos, L. O., & Beppu, M. M. (2011). Natural-based plasticizers and biopolymer films: A review. European Polymer Journal, 47(3), 254-263. doi:10.1016/j.eurpolymj.2010.12.011Sanyang, M. L., Sapuan, S. M., Jawaid, M., Ishak, M. R., & Sahari, J. (2015). Effect of plasticizer type and concentration on physical properties of biodegradable films based on sugar palm (arenga pinnata) starch for food packaging. Journal of Food Science and Technology, 53(1), 326-336. doi:10.1007/s13197-015-2009-7Pavlath, A. E., Voisin, A., & Robertson, G. H. (1999). Pectin-based biodegradable water insoluble films. Macromolecular Symposia, 140(1), 107-113. doi:10.1002/masy.19991400112Penhasi, A., & Meidan, V. M. (2014). Preparation and characterization of in situ ionic cross-linked pectin films: Unique biodegradable polymers. Carbohydrate Polymers, 102, 254-260. doi:10.1016/j.carbpol.2013.11.042Lorevice, M. V., Otoni, C. G., Moura, M. R. de, & Mattoso, L. H. C. (2016). Chitosan nanoparticles on the improvement of thermal, barrier, and mechanical properties of high- and low-methyl pectin films. Food Hydrocolloids, 52, 732-740. doi:10.1016/j.foodhyd.2015.08.003Martelli, M. R., Barros, T. T., de Moura, M. R., Mattoso, L. H. C., & Assis, O. B. G. (2012). Effect of Chitosan Nanoparticles and Pectin Content on Mechanical Properties and Water Vapor Permeability of Banana Puree Films. Journal of Food Science, 78(1), N98-N104. doi:10.1111/j.1750-3841.2012.03006.xChaichi, M., Hashemi, M., Badii, F., & Mohammadi, A. (2017). Preparation and characterization of a novel bionanocomposite edible film based on pectin and crystalline nanocellulose. Carbohydrate Polymers, 157, 167-175. doi:10.1016/j.carbpol.2016.09.062Šešlija, S., Nešić, A., Škorić, M. L., Krušić, M. K., Santagata, G., & Malinconico, M. (2018). Pectin/Carboxymethylcellulose Films as a Potential Food Packaging Material. Macromolecular Symposia, 378(1), 1600163. doi:10.1002/masy.201600163Pasini Cabello, S. D., Takara, E. A., Marchese, J., & Ochoa, N. A. (2015). Influence of plasticizers in pectin films: Microstructural changes. Materials Chemistry and Physics, 162, 491-497. doi:10.1016/j.matchemphys.2015.06.019Espitia, P. J. P., Du, W.-X., Avena-Bustillos, R. de J., Soares, N. de F. F., & McHugh, T. H. (2014). Edible films from pectin: Physical-mechanical and antimicrobial properties - A review. Food Hydrocolloids, 35, 287-296. doi:10.1016/j.foodhyd.2013.06.005Bhardwaj, N., & Kundu, S. C. (2010). Electrospinning: A fascinating fiber fabrication technique. Biotechnology Advances, 28(3), 325-347. doi:10.1016/j.biotechadv.2010.01.004Torres-Giner, S., Wilkanowicz, S., Melendez-Rodriguez, B., & Lagaron, J. M. (2017). Nanoencapsulation of Aloe vera in Synthetic and Naturally Occurring Polymers by Electrohydrodynamic Processing of Interest in Food Technology and Bioactive Packaging. Journal of Agricultural and Food Chemistry, 65(22), 4439-4448. doi:10.1021/acs.jafc.7b01393Torres-Giner, S., Pérez-Masiá, R., & Lagaron, J. M. (2016). A review on electrospun polymer nanostructures as advanced bioactive platforms. Polymer Engineering & Science, 56(5), 500-527. doi:10.1002/pen.24274Frenot, A., & Chronakis, I. S. (2003). Polymer nanofibers assembled by electrospinning. Current Opinion in Colloid & Interface Science, 8(1), 64-75. doi:10.1016/s1359-0294(03)00004-9Kim, J., & Reneker, D. H. (1999). Mechanical properties of composites using ultrafine electrospun fibers. Polymer Composites, 20(1), 124-131. doi:10.1002/pc.10340Furlan, R., Rosado, J. A. M., Rodriguez, G. G., Fachini, E. R., da Silva, A. N. R., & da Silva, M. L. P. (2012). Formation and Characterization of Oriented Micro- and Nanofibers Containing Poly (ethylene oxide) and Pectin. Journal of The Electrochemical Society, 159(3), K66-K71. doi:10.1149/2.057203jesLiu, S.-C., Li, R., Tomasula, P. M., Sousa, A. M. M., & Liu, L. (2016). Electrospun Food-Grade Ultrafine Fibers from Pectin and Pullulan Blends. Food and Nutrition Sciences, 07(07), 636-646. doi:10.4236/fns.2016.77065Cui, S., Yao, B., Sun, X., Hu, J., Zhou, Y., & Liu, Y. (2016). Reducing the content of carrier polymer in pectin nanofibers by electrospinning at low loading followed with selective washing. Materials Science and Engineering: C, 59, 885-893. doi:10.1016/j.msec.2015.10.086Cui, S.-S., Sun, X., Yao, B., Peng, X.-X., Zhang, X.-T., Zhou, Y.-F., … Liu, Y.-C. (2017). Size-Tunable Low Molecular Weight Pectin-Based Electrospun Nanofibers Blended with Low Content of Poly(ethylene oxide). Journal of Nanoscience and Nanotechnology, 17(1), 681-689. doi:10.1166/jnn.2017.12540McCune, D., Guo, X., Shi, T., Stealey, S., Antrobus, R., Kaltchev, M., … Zhang, W. (2018). Electrospinning pectin-based nanofibers: a parametric and cross-linker study. Applied Nanoscience, 8(1-2), 33-40. doi:10.1007/s13204-018-0649-4Chen, S., Cui, S., Zhang, H., Pei, X., Hu, J., Zhou, Y., & Liu, Y. (2018). Cross-Linked Pectin Nanofibers with Enhanced Cell Adhesion. Biomacromolecules, 19(2), 490-498. doi:10.1021/acs.biomac.7b01605Li, K., Cui, S., Hu, J., Zhou, Y., & Liu, Y. (2018). Crosslinked pectin nanofibers with well-dispersed Ag nanoparticles: Preparation and characterization. Carbohydrate Polymers, 199, 68-74. doi:10.1016/j.carbpol.2018.07.013Rockwell, P. L., Kiechel, M. A., Atchison, J. S., Toth, L. J., & Schauer, C. L. (2014). Various-sourced pectin and polyethylene oxide electrospun fibers. Carbohydrate Polymers, 107, 110-118. doi:10.1016/j.carbpol.2014.02.026Akinalan Balik, B., & Argin, S. (2019). Role of rheology on the formation of Nanofibers from pectin and polyethylene oxide blends. Journal of Applied Polymer Science, 137(3), 48294. doi:10.1002/app.48294Alborzi, S., Lim, L.-T., & Kakuda, Y. (2010). Electrospinning of Sodium Alginate-Pectin Ultrafine Fibers. Journal of Food Science, 75(1), C100-C107. doi:10.1111/j.1750-3841.2009.01437.xCherpinski, A., Torres-Giner, S., Cabedo, L., & Lagaron, J. M. (2017). Post-processing optimization of electrospun submicron poly(3-hydroxybutyrate) fibers to obtain continuous films of interest in food packaging applications. Food Additives & Contaminants: Part A, 34(10), 1817-1830. doi:10.1080/19440049.2017.1355115Cherpinski, A., Torres-Giner, S., Vartiainen, J., Peresin, M. S., Lahtinen, P., & Lagaron, J. M. (2018). Improving the water resistance of nanocellulose-based films with polyhydroxyalkanoates processed by the electrospinning coating technique. Cellulose, 25(2), 1291-1307. doi:10.1007/s10570-018-1648-zMelendez-Rodriguez, B., Castro-Mayorga, J. L., Reis, M. A. M., Sammon, C., Cabedo, L., Torres-Giner, S., & Lagaron, J. M. (2018). Preparation and Characterization of Electrospun Food Biopackaging Films of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Derived From Fruit Pulp Biowaste. Frontiers in Sustainable Food Systems, 2. doi:10.3389/fsufs.2018.00038Melendez-Rodriguez, B., Figueroa-Lopez, K. J., Bernardos, A., Martínez-Máñez, R., Cabedo, L., Torres-Giner, S., & Lagaron, J. M. (2019). Electrospun Antimicrobial Films of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Containing Eugenol Essential Oil Encapsulated in Mesoporous Silica Nanoparticles. Nanomaterials, 9(2), 227. doi:10.3390/nano9020227Figueroa-Lopez, K. J., Vicente, A. A., Reis, M. A. M., Torres-Giner, S., & Lagaron, J. M. (2019). Antimicrobial and Antioxidant Performance of Various Essential Oils and Natural Extracts and Their Incorporation into Biowaste Derived Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Layers Made from Electrospun Ultrathin Fibers. Nanomaterials, 9(2), 144. doi:10.3390/nano9020144Quiles-Carrillo, L., Montanes, N., Lagaron, J., Balart, R., & Torres-Giner, S. (2019). Bioactive Multilayer Polylactide Films with Controlled Release Capacity of Gallic Acid Accomplished by Incorporating Electrospun Nanostructured Coatings and Interlayers. Applied Sciences, 9(3), 533. doi:10.3390/app9030533Agüero, A., Morcillo, M. del C., Quiles-Carrillo, L., Balart, R., Boronat, T., Lascano, D., … Fenollar, O. (2019). Study of the Influence of the Reprocessing Cycles on the Final Properties of Polylactide Pieces Obtained by Injection Molding. Polymers, 11(12), 1908. doi:10.3390/polym11121908Ralet, M.-C., Crépeau, M.-J., Buchholt, H.-C., & Thibault, J.-F. (2003). Polyelectrolyte behaviour and calcium binding properties of sugar beet pectins differing in their degrees of methylation and acetylation. Biochemical Engineering Journal, 16(2), 191-201. doi:10.1016/s1369-703x(03)00037-8Bizarria, M. T. M., d’ Ávila, M. A., & Mei, L. H. I. (2014). Non-woven nanofiber chitosan/peo membranes obtained by electrospinning. Brazilian Journal of Chemical Engineering, 31(1), 57-68. doi:10.1590/s0104-66322014000100007Einhorn-Stoll, U., Kunzek, H., & Dongowski, G. (2007). Thermal analysis of chemically and mechanically modified pectins. Food Hydrocolloids, 21(7), 1101-1112. doi:10.1016/j.foodhyd.2006.08.004Godeck, R., Kunzek, H., & Kabbert, R. (2001). Thermal analysis of plant cell wall materials depending on the chemical structure and pre-treatment prior to drying. European Food Research and Technology, 213(4-5), 395-404. doi:10.1007/s002170100388Kastner, H., Einhorn-Stoll, U., & Senge, B. (2012). Structure formation in sugar containing pectin gels – Influence of Ca2+ on the gelation of low-methoxylated pectin at acidic pH. Food Hydrocolloids, 27(1), 42-49. doi:10.1016/j.foodhyd.2011.09.001Nisar, T., Wang, Z.-C., Yang, X., Tian, Y., Iqbal, M., & Guo, Y. (2018). Characterization of citrus pectin films integrated with clove bud essential oil: Physical, thermal, barrier, antioxidant and antibacterial properties. International Journal of Biological Macromolecules, 106, 670-680. doi:10.1016/j.ijbiomac.2017.08.068BUREN, J. P. (1979). THE CHEMISTRY OF TEXTURE IN FRUITS AND VEGETABLES. Journal of Texture Studies, 10(1), 1-23. doi:10.1111/j.1745-4603.1979.tb01305.xSila, D. N., Smout, C., Elliot, F., Loey, A. V., & Hendrickx, M. (2006). Non-enzymatic Depolymerization of Carrot Pectin: Toward a Better Understanding of Carrot Texture During Thermal Processing. Journal of Food Science, 71(1), E1-E9. doi:10.1111/j.1365-2621.2006.tb12391.xDiaz, J. V., Anthon, G. E., & Barrett, D. M. (2007). Nonenzymatic Degradation of Citrus Pectin and Pectate during Prolonged Heating:  Effects of pH, Temperature, and Degree of Methyl Esterification. Journal of Agricultural and Food Chemistry, 55(13), 5131-5136. doi:10.1021/jf0701483Krall, S. M., & McFeeters, R. F. (1998). Pectin Hydrolysis:  Effect of Temperature, Degree of Methylation, pH, and Calcium on Hydrolysis Rates. Journal of Agricultural and Food Chemistry, 46(4), 1311-1315. doi:10.1021/jf970473yRodrigo, D., Cortés, C., Clynen, E., Schoofs, L., Loey, A. V., & Hendrickx, M. (2006). Thermal and high-pressure stability of purified polygalacturonase and pectinmethylesterase from four different tomato processing varieties. Food Research International, 39(4), 440-448. doi:10.1016/j.foodres.2005.09.007Aburto, J., Moran, M., Galano, A., & Torres-García, E. (2015). Non-isothermal pyrolysis of pectin: A thermochemical and kinetic approach. Journal of Analytical and Applied Pyrolysis, 112, 94-104. doi:10.1016/j.jaap.2015.02.012Dick, M., Costa, T. M. H., Gomaa, A., Subirade, M., Rios, A. de O., & Flôres, S. H. (2015). Edible film production from chia seed mucilage: Effect of glycerol concentration on its physicochemical and mechanical properties. Carbohydrate Polymers, 130, 198-205. doi:10.1016/j.carbpol.2015.05.040Mishra, R. K., Anis, A., Mondal, S., Dutt, M., & Banthia, A. K. (2009). REPARATION AND CHARACTERIZATION OF AMIDATED PECTIN BASED POLYMER ELECTROLYTE MEMBRANES. Chinese Journal of Polymer Science, 27(05), 639. doi:10.1142/s0256767909004333Villanova, J. C. O., Ayres, E., & Oréfice, R. L. (2015). Design, characterization and preliminary in vitro evaluation of a mucoadhesive polymer based on modified pectin and acrylic monomers with potential use as a pharmaceutical excipient. Carbohydrate Polymers, 121, 372-381. doi:10.1016/j.carbpol.2014.12.052Basiak, E., Lenart, A., & Debeaufort, F. (2018). How Glycerol and Water Contents Affect the Structural and Functional Properties of Starch-Based Edible Films. Polymers, 10(4), 412. doi:10.3390/polym10040412Gondaliya, N., Kanchan, D. K., Sharma, P., & Joge, P. (2011). Structural and Conductivity Studies of Poly(Ethylene Oxide) – Silver Triflate Polymer Electrolyte System. Materials Sciences and Applications, 02(11), 1639-1643. doi:10.4236/msa.2011.211218Sanchez-Garcia, M. D., Gimenez, E., & Lagaron, J. M. (2008). Morphology and barrier properties of solvent cast composites of thermoplastic biopolymers and purified cellulose fibers. Carbohydrate Polymers, 71(2), 235-244. doi:10.1016/j.carbpol.2007.05.041Fabra, M. J., Lopez-Rubio, A., & Lagaron, J. M. (2014). Nanostructured interlayers of zein to improve the barrier properties of high barrier polyhydroxyalkanoates and other polyesters. Journal of Food Engineering, 127, 1-9. doi:10.1016/j.jfoodeng.2013.11.02

    Quality and Shelf-Life Stability of Pork Meat Fillets Packaged in Multilayer Polylactide Films

    Full text link
    [EN] In the present study, the effectiveness of a multilayer film of polylactide (PLA), fully bio-based and compostable, was ascertained to develop a novel sustainable packaging solution for the preservation of fresh pork meat. To this end, the multilayer PLA films were first characterized in terms of their thermal characteristics, structure, mechanical performance, permeance to water and aroma vapors and oxygen, and optical properties and, for the first time, compared with two commercial high-barrier multilayer packaging films. Thereafter, the multilayers were thermosealed to package fillets of fresh pork meat and the physicochemical changes, lipid oxidation levels, and microbiological counts were monitored in the food samples during storage under refrigeration conditions. Results showed that the meat fillets packaged in PLA developed a redder color and showed certain indications of dehydration and oxidation, being more noticeably after 11 days of storage, due to the higher water vapor and oxygen permeance values of the biopolymer multilayer. However, the pH changes and bacterial growth in the cold-stored fresh pork meat samples were minimal and very similar in the three tested multilayer films, successfully accomplishing the requirements of the food quality and safety standards at the end of storage.This research was funded by the Spanish Ministry of Science and Innovation (MICI), grant number PID2019-105207RB-I00. E.H.-G. and S.T.-G. acknowledge MICI for her predoctoral research grant (BES2017-082040) and his Ramón y Cajal contract (RYC2019-027784-I). The authors are also grateful to the Packaging Technologies Department of AINIA for the technical support provided during the determination of the multilayer structures. Derprosa is also acknowledged for gently providing the multilayer PLA film.Hernandez-Garcia, E.; Vargas, M.; Torres-Giner, S. (2022). Quality and Shelf-Life Stability of Pork Meat Fillets Packaged in Multilayer Polylactide Films. Foods. 11(3):1-20. https://doi.org/10.3390/foods1103042612011

    Nanomaterials to enhance food quality, safety, and health impact

    Get PDF
    This article belongs to the Special Issue Nanomaterials to Enhance Food Quality, Safety, and Health Impact.Food quality and safety are key aspects to guarantee that foods reach consumers in optimal conditions from the point of view of freshness and microbiology. Nanotechnology offers significant potential to secure or even enhance these aspects. Novel technologies, such as nanofabrication and nanoencapsulation, can provide new added value solutions for the fortification of foods with bioactives and targeted controlled release in the gut. Nanomaterials can also support food preservation aspects by being added directly into a food matrix or into food contact materials such as packaging. Thus, nanomaterials can be leveraged in the form of nanocomposites in food packaging design by melt compounding, solvent casting, lamination or electrohydrodynamic processing (EHDP) to promote passive, active, and even bioactive properties such as barrier, antimicrobial, antioxidant, and oxygen scavenging roles and the controlled release of functional ingredients. These attributes can be exerted either by the intended or non-intended migration of the nanomaterials or by the active substances they may carry. Lastly, nanomaterials can be advantageously applied to provide unique opportunities in Circular Bioeconomy strategies in relation to the valorization of, for instance, agro-industrial wastes and food processing by-products.This research work was funded by the Spanish Ministry of Science and Innovation (MICI) project number RTI2018-097249-B-C21.Peer reviewe

    Development of Sustainable and Cost-Competitive Injection-Molded Pieces of Partially Bio-Based Polyethylene Terephthalate through the Valorization of Cotton Textile Waste

    Full text link
    [EN] This study presents the valorization of cotton waste from the textile industry for the development of sustainable and cost-competitive biopolymer composites. The as-received linter of recycled cotton was first chopped to obtain short fibers, called recycled cotton fibers (RCFs), which were thereafter melt-compounded in a twin-screw extruder with partially bio-based polyethylene terephthalate (bio-PET) and shaped into pieces by injection molding. It was observed that the incorporation of RCF, in the 1¿10 wt% range, successfully increased rigidity and hardness of bio-PET. However, particularly at the highest fiber contents, the ductility and toughness of the pieces were considerably impaired due to the poor interfacial adhesion of the fibers to the biopolyester matrix. Interestingly, RCF acted as an effective nucleating agent for the bio-PET crystallization and it also increased thermal resistance. In addition, the overall dimensional stability of the pieces was improved as a function of the fiber loading. Therefore, bio-PET pieces containing 3¿5 wt% RCF presented very balanced properties in terms of mechanical strength, toughness, and thermal resistance. The resultant biopolymer composite pieces can be of interest in rigid food packaging and related applications, contributing positively to the optimization of the integrated biorefinery system design and also to the valorization of textile wastes.This research was supported by the Ministry of Science, Innovation, and Universities (MICIU) through the AGL2015-63855-C2-1-R and MAT2017-84909-C2-2-R program numbers. L.Q.-C. wants to thank the Generalitat Valenciana (GVA) for his FPI grant (ACIF/2016/182) and the Spanish Ministry of Education, Culture, and Sports (MECD) for his FPU grant (FPU15/03812). S.T.-G. is a recipient of a Juan de la Cierva Incorporación contract (IJCI-2016-29675) from MICIU.Montava-Jordà, S.; Torres-Giner, S.; Ferrándiz Bou, S.; Quiles-Carrillo, L.; Montanes, N. (2019). Development of Sustainable and Cost-Competitive Injection-Molded Pieces of Partially Bio-Based Polyethylene Terephthalate through the Valorization of Cotton Textile Waste. International Journal of Molecular Sciences. 20(6):1-19. https://doi.org/10.3390/ijms20061378S119206Tharanathan, R. . (2003). Biodegradable films and composite coatings: past, present and future. Trends in Food Science & Technology, 14(3), 71-78. doi:10.1016/s0924-2244(02)00280-7Plastics in a circular economyhttp://www.europarl.europa.eu/RegData/etudes/ATAG/2018/625163/EPRS_ATA(2018)625163_EN.pdfBabu, R. P., O’Connor, K., & Seeram, R. (2013). Current progress on bio-based polymers and their future trends. Progress in Biomaterials, 2(1), 8. doi:10.1186/2194-0517-2-8Torres-Giner, S., Torres, A., Ferrándiz, M., Fombuena, V., & Balart, R. (2017). Antimicrobial activity of metal cation-exchanged zeolites and their evaluation on injection-molded pieces of bio-based high-density polyethylene. Journal of Food Safety, 37(4), e12348. doi:10.1111/jfs.12348Essabir, H., Bensalah, M. O., Rodrigue, D., Bouhfid, R., & Qaiss, A. (2016). Structural, mechanical and thermal properties of bio-based hybrid composites from waste coir residues: Fibers and shell particles. Mechanics of Materials, 93, 134-144. doi:10.1016/j.mechmat.2015.10.018Holbery, J., & Houston, D. (2006). Natural-fiber-reinforced polymer composites in automotive applications. JOM, 58(11), 80-86. doi:10.1007/s11837-006-0234-2Quiles-Carrillo, L., Montanes, N., Boronat, T., Balart, R., & Torres-Giner, S. (2017). Evaluation of the engineering performance of different bio-based aliphatic homopolyamide tubes prepared by profile extrusion. Polymer Testing, 61, 421-429. doi:10.1016/j.polymertesting.2017.06.004Chen, L., Pelton, R. E. O., & Smith, T. M. (2016). Comparative life cycle assessment of fossil and bio-based polyethylene terephthalate (PET) bottles. Journal of Cleaner Production, 137, 667-676. doi:10.1016/j.jclepro.2016.07.094Rosenboom, J.-G., Hohl, D. K., Fleckenstein, P., Storti, G., & Morbidelli, M. (2018). Bottle-grade polyethylene furanoate from ring-opening polymerisation of cyclic oligomers. Nature Communications, 9(1). doi:10.1038/s41467-018-05147-yMonteiro, S. N., Lopes, F. P. D., Ferreira, A. S., & Nascimento, D. C. O. (2009). Natural-fiber polymer-matrix composites: Cheaper, tougher, and environmentally friendly. JOM, 61(1), 17-22. doi:10.1007/s11837-009-0004-zTaha, I., & Ziegmann, G. (2006). A Comparison of Mechanical Properties of Natural Fiber Filled Biodegradable and Polyolefin Polymers. Journal of Composite Materials, 40(21), 1933-1946. doi:10.1177/0021998306061304European Bioplasticshttps://www.european-bioplastics.org/Shen, L., Worrell, E., & Patel, M. K. (2012). Comparing life cycle energy and GHG emissions of bio-based PET, recycled PET, PLA, and man-made cellulosics. Biofuels, Bioproducts and Biorefining, 6(6), 625-639. doi:10.1002/bbb.1368Tabone, M. D., Cregg, J. J., Beckman, E. J., & Landis, A. E. (2010). Sustainability Metrics: Life Cycle Assessment and Green Design in Polymers. Environmental Science & Technology, 44(21), 8264-8269. doi:10.1021/es101640nCarus, M., Eder, A., & Beckmann, J. (2014). GreenPremium Prices Along the Value Chain of Biobased Products. Industrial Biotechnology, 10(2), 83-88. doi:10.1089/ind.2014.1512Mohanty, A. K., Misra, M., & Drzal, L. T. (2002). Journal of Polymers and the Environment, 10(1/2), 19-26. doi:10.1023/a:1021013921916Vollrath, F., & Porter, D. (2006). Spider silk as archetypal protein elastomer. Soft Matter, 2(5), 377. doi:10.1039/b600098nKelly, F. M., Johnston, J. H., Borrmann, T., & Richardson, M. J. (2008). Functionalised Hybrid Materials of Conducting Polymers with Individual Wool Fibers. Journal of Nanoscience and Nanotechnology, 8(4), 1965-1972. doi:10.1166/jnn.2008.040Farahani, G. N., Ahmad, I., & Mosadeghzad, Z. (2012). Effect of Fiber Content, Fiber Length and Alkali Treatment on Properties of Kenaf Fiber/UPR Composites Based on Recycled PET Wastes. Polymer-Plastics Technology and Engineering, 51(6), 634-639. doi:10.1080/03602559.2012.659314De Oliveira Santos, R. P., Castro, D. O., Ruvolo-Filho, A. C., & Frollini, E. (2014). Processing and thermal properties of composites based on recycled PET, sisal fibers, and renewable plasticizers. Journal of Applied Polymer Science, 131(12), n/a-n/a. doi:10.1002/app.40386Sena Neto, A. R., Araujo, M. A. M., Barboza, R. M. P., Fonseca, A. S., Tonoli, G. H. D., Souza, F. V. D., … Marconcini, J. M. (2015). Comparative study of 12 pineapple leaf fiber varieties for use as mechanical reinforcement in polymer composites. Industrial Crops and Products, 64, 68-78. doi:10.1016/j.indcrop.2014.10.042Anggraini, V., Asadi, A., Huat, B. B. K., & Nahazanan, H. (2015). Effects of coir fibers on tensile and compressive strength of lime treated soft soil. Measurement, 59, 372-381. doi:10.1016/j.measurement.2014.09.059Abdullah, N. M., & Ahmad, I. (2013). Potential of using polyester reinforced coconut fiber composites derived from recycling polyethylene terephthalate (PET) waste. Fibers and Polymers, 14(4), 584-590. doi:10.1007/s12221-013-0584-7Lei, Y., & Wu, Q. (2010). Wood plastic composites based on microfibrillar blends of high density polyethylene/poly(ethylene terephthalate). Bioresource Technology, 101(10), 3665-3671. doi:10.1016/j.biortech.2009.12.069Ozalp, M. (2010). Study of the effect of adding the powder of waste PET bottles and borax pentahydrate to the urea formaldehyde adhesive applied on plywood. European Journal of Wood and Wood Products, 69(3), 369-374. doi:10.1007/s00107-010-0439-5Ardekani, S. M., Dehghani, A., Al-Maadeed, M. A., Wahit, M. U., & Hassan, A. (2014). Mechanical and thermal properties of recycled poly(ethylene terephthalate) reinforced newspaper fiber composites. Fibers and Polymers, 15(7), 1531-1538. doi:10.1007/s12221-014-1531-yLou, C.-W., Lin, C.-W., Lei, C.-H., Su, K.-H., Hsu, C.-H., Liu, Z.-H., & Lin, J.-H. (2007). PET/PP blend with bamboo charcoal to produce functional composites. Journal of Materials Processing Technology, 192-193, 428-433. doi:10.1016/j.jmatprotec.2007.04.018Corradini, E., Ito, E. N., Marconcini, J. M., Rios, C. T., Agnelli, J. A. M., & Mattoso, L. H. C. (2009). Interfacial behavior of composites of recycled poly(ethyelene terephthalate) and sugarcane bagasse fiber. Polymer Testing, 28(2), 183-187. doi:10.1016/j.polymertesting.2008.11.014Chen, R. S., Ab Ghani, M. H., Ahmad, S., Salleh, M. N., & Tarawneh, M. A. (2014). Rice husk flour biocomposites based on recycled high-density polyethylene/polyethylene terephthalate blend: effect of high filler loading on physical, mechanical and thermal properties. Journal of Composite Materials, 49(10), 1241-1253. doi:10.1177/0021998314533361Kim, S. S., Kim, J., Huang, T. S., Whang, H. S., & Lee, J. (2009). Antimicrobial polyethylene terephthalate (PET) treated with an aromaticN-halamine precursor,m-aramid. Journal of Applied Polymer Science, 114(6), 3835-3840. doi:10.1002/app.31016Friedrich, K. (1985). Microstructural efficiency and fracture toughness of short fiber/thermoplastic matrix composites. Composites Science and Technology, 22(1), 43-74. doi:10.1016/0266-3538(85)90090-9Fung, K. L., & Li, R. K. Y. (2006). Mechanical properties of short glass fibre reinforced and functionalized rubber-toughened PET blends. Polymer Testing, 25(7), 923-931. doi:10.1016/j.polymertesting.2006.05.013Li, Z., Luo, G., Wei, F., & Huang, Y. (2006). Microstructure of carbon nanotubes/PET conductive composites fibers and their properties. Composites Science and Technology, 66(7-8), 1022-1029. doi:10.1016/j.compscitech.2005.08.006Quiles-Carrillo, L., Montanes, N., Sammon, C., Balart, R., & Torres-Giner, S. (2018). Compatibilization of highly sustainable polylactide/almond shell flour composites by reactive extrusion with maleinized linseed oil. Industrial Crops and Products, 111, 878-888. doi:10.1016/j.indcrop.2017.10.062Quiles-Carrillo, L., Montanes, N., Garcia-Garcia, D., Carbonell-Verdu, A., Balart, R., & Torres-Giner, S. (2018). Effect of different compatibilizers on injection-molded green composite pieces based on polylactide filled with almond shell flour. Composites Part B: Engineering, 147, 76-85. doi:10.1016/j.compositesb.2018.04.017George, M., Chae, M., & Bressler, D. C. (2016). Composite materials with bast fibres: Structural, technical, and environmental properties. Progress in Materials Science, 83, 1-23. doi:10.1016/j.pmatsci.2016.04.002Natural Fibre Demand Risinghttp://cottonanalytics.com/natural-fibre-demand-rising/Peña-Pichardo, P., Martínez-Barrera, G., Martínez-López, M., Ureña-Núñez, F., & dos Reis, J. M. L. (2018). Recovery of cotton fibers from waste Blue-Jeans and its use in polyester concrete. Construction and Building Materials, 177, 409-416. doi:10.1016/j.conbuildmat.2018.05.137Mohanty, A. K., Misra, M., & Hinrichsen, G. (2000). Biofibres, biodegradable polymers and biocomposites: An overview. Macromolecular Materials and Engineering, 276-277(1), 1-24. doi:10.1002/(sici)1439-2054(20000301)276:13.0.co;2-wBayer, F. L. (2002). Polyethylene terephthalate recycling for food-contact applications: testing, safety and technologies: a global perspective. Food Additives & Contaminants, 19(sup1), 111-134. doi:10.1080/02652030110083694Zou, Y., Reddy, N., & Yang, Y. (2011). Reusing polyester/cotton blend fabrics for composites. Composites Part B: Engineering, 42(4), 763-770. doi:10.1016/j.compositesb.2011.01.022Oromiehie, A., & Mamizadeh, A. (2004). Recycling PET beverage bottles and improving properties. Polymer International, 53(6), 728-732. doi:10.1002/pi.1389Elamri, A., Lallam, A., Harzallah, O., & Bencheikh, L. (2007). Mechanical characterization of melt spun fibers from recycled and virgin PET blends. Journal of Materials Science, 42(19), 8271-8278. doi:10.1007/s10853-007-1590-1Torres-Giner, S., Hilliou, L., Melendez-Rodriguez, B., Figueroa-Lopez, K. J., Madalena, D., Cabedo, L., … Lagaron, J. M. (2018). Melt processability, characterization, and antibacterial activity of compression-molded green composite sheets made of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) reinforced with coconut fibers impregnated with oregano essential oil. Food Packaging and Shelf Life, 17, 39-49. doi:10.1016/j.fpsl.2018.05.002Wambua, P., Ivens, J., & Verpoest, I. (2003). Natural fibres: can they replace glass in fibre reinforced plastics? Composites Science and Technology, 63(9), 1259-1264. doi:10.1016/s0266-3538(03)00096-4Thwe, M. M., & Liao, K. (2002). Effects of environmental aging on the mechanical properties of bamboo–glass fiber reinforced polymer matrix hybrid composites. Composites Part A: Applied Science and Manufacturing, 33(1), 43-52. doi:10.1016/s1359-835x(01)00071-9Baley, C., Busnel, F., Grohens, Y., & Sire, O. (2006). Influence of chemical treatments on surface properties and adhesion of flax fibre–polyester resin. Composites Part A: Applied Science and Manufacturing, 37(10), 1626-1637. doi:10.1016/j.compositesa.2005.10.014Valadez-Gonzalez, A., Cervantes-Uc, J. M., Olayo, R., & Herrera-Franco, P. J. (1999). Effect of fiber surface treatment on the fiber–matrix bond strength of natural fiber reinforced composites. Composites Part B: Engineering, 30(3), 309-320. doi:10.1016/s1359-8368(98)00054-7Strömbro, J., & Gudmundson, P. (2008). An anisotropic fibre-network model for mechano-sorptive creep in paper. International Journal of Solids and Structures, 45(22-23), 5765-5787. doi:10.1016/j.ijsolstr.2008.06.010Dunne, R., Desai, D., & Sadiku, R. (2017). Material characterization of blended sisal-kenaf composites with an ABS matrix. Applied Acoustics, 125, 184-193. doi:10.1016/j.apacoust.2017.03.022Pereira, L. M., Corrêa, A. C., Souza Filho, M. de sá M. de, Rosa, M. de F., & Ito, E. N. (2017). Rheological, Morphological and Mechanical Characterization of Recycled Poly (Ethylene Terephthalate) Blends and Composites. Materials Research, 20(3), 791-800. doi:10.1590/1980-5373-mr-2016-0870Torres-Giner, S., Montanes, N., Fombuena, V., Boronat, T., & Sanchez-Nacher, L. (2016). Preparation and characterization of compression-molded green composite sheets made of poly(3-hydroxybutyrate) reinforced with long pita fibers. Advances in Polymer Technology, 37(5), 1305-1315. doi:10.1002/adv.21789Kim, S.-J., Moon, J.-B., Kim, G.-H., & Ha, C.-S. (2008). Mechanical properties of polypropylene/natural fiber composites: Comparison of wood fiber and cotton fiber. Polymer Testing, 27(7), 801-806. doi:10.1016/j.polymertesting.2008.06.002Kant, R. (2012). Textile dyeing industry an environmental hazard. Natural Science, 04(01), 22-26. doi:10.4236/ns.2012.41004Dehghani, A., Madadi Ardekani, S., Al-Maadeed, M. A., Hassan, A., & Wahit, M. U. (2013). Mechanical and thermal properties of date palm leaf fiber reinforced recycled poly (ethylene terephthalate) composites. Materials & Design (1980-2015), 52, 841-848. doi:10.1016/j.matdes.2013.06.022Hristov, V., & Vasileva, S. (2003). Dynamic Mechanical and Thermal Properties of Modified Poly(propylene) Wood Fiber Composites. Macromolecular Materials and Engineering, 288(10), 798-806. doi:10.1002/mame.200300110Wang, Y., Gao, J., Ma, Y., & Agarwal, U. S. (2006). Study on mechanical properties, thermal stability and crystallization behavior of PET/MMT nanocomposites. Composites Part B: Engineering, 37(6), 399-407. doi:10.1016/j.compositesb.2006.02.014Ke, Y.-C., Wu, T.-B., & Xia, Y.-F. (2007). The nucleation, crystallization and dispersion behavior of PET–monodisperse SiO2 composites. Polymer, 48(11), 3324-3336. doi:10.1016/j.polymer.2007.03.059Blundell, D. J. (1987). On the interpretation of multiple melting peaks in poly(ether ether ketone). Polymer, 28(13), 2248-2251. doi:10.1016/0032-3861(87)90382-xYasuniwa, M., Sakamo, K., Ono, Y., & Kawahara, W. (2008). Melting behavior of poly(l-lactic acid): X-ray and DSC analyses of the melting process. Polymer, 49(7), 1943-1951. doi:10.1016/j.polymer.2008.02.034Kong, Y., & Hay, J. . (2003). Multiple melting behaviour of poly(ethylene terephthalate). Polymer, 44(3), 623-633. doi:10.1016/s0032-3861(02)00814-5Varga, J. (1995). Interfacial morphologies in carbon fibre-reinforced polypropylene microcomposites. Polymer, 36(25), 4877-4881. doi:10.1016/00323-8619(59)9305e-De Souza, A. M. C., & Caldeira, C. B. (2015). An investigation on recycled PET/PP and recycled PET/PP-EP compatibilized blends: Rheological, morphological, and mechanical properties. Journal of Applied Polymer Science, 132(17). doi:10.1002/app.41892Gangil, S., & Bhargav, V. K. (2018). Influence of torrefaction on intrinsic bioconstituents of cotton stalk: TG-insights. Energy, 142, 1066-1073. doi:10.1016/j.energy.2017.10.128Dan-mallam Yakubu, Abdullah, M. Z., & Yusoff, P. S. M. M. (2013). Mechanical properties of recycled kenaf/polyethylene terephthalate (PET) fiber reinforced polyoxymethylene (POM) hybrid composite. Journal of Applied Polymer Science, 131(3), n/a-n/a. doi:10.1002/app.39831Nurul Fazita, M. R., Jayaraman, K., Bhattacharyya, D., Mohamad Haafiz, M. K., Saurabh, C., Hussin, M., & H.P.S., A. (2016). Green Composites Made of Bamboo Fabric and Poly (Lactic) Acid for Packaging Applications—A Review. Materials, 9(6), 435. doi:10.3390/ma9060435Alongi, J., Camino, G., & Malucelli, G. (2013). Heating rate effect on char yield from cotton, poly(ethylene terephthalate) and blend fabrics. Carbohydrate Polymers, 92(2), 1327-1334. doi:10.1016/j.carbpol.2012.10.029Alongi, J., Carosio, F., & Malucelli, G. (2012). Influence of ammonium polyphosphate-/poly(acrylic acid)-based layer by layer architectures on the char formation in cotton, polyester and their blends. Polymer Degradation and Stability, 97(9), 1644-1653. doi:10.1016/j.polymdegradstab.2012.06.025Levchik, S. V., & Weil, E. D. (2004). A review on thermal decomposition and combustion of thermoplastic polyesters. Polymers for Advanced Technologies, 15(12), 691-700. doi:10.1002/pat.526Hujuri, U., Ghoshal, A. K., & Gumma, S. (2013). Temperature-dependent pyrolytic product evolution profile for polyethylene terephthalate. Journal of Applied Polymer Science, n/a-n/a. doi:10.1002/app.39681Candan, Z., Gardner, D. J., & Shaler, S. M. (2016). Dynamic mechanical thermal analysis (DMTA) of cellulose nanofibril/nanoclay/pMDI nanocomposites. Composites Part B: Engineering, 90, 126-132. doi:10.1016/j.compositesb.2015.12.016Marques, M. F. V., Lunz, J. N., Aguiar, V. O., Grafova, I., Kemell, M., Visentin, F., … Grafov, A. (2014). Thermal and Mechanical Properties of Sustainable Composites Reinforced with Natural Fibers. Journal of Polymers and the Environment, 23(2), 251-260. doi:10.1007/s10924-014-0687-2Torres-Giner, S., Montanes, N., Fenollar, O., García-Sanoguera, D., & Balart, R. (2016). Development and optimization of renewable vinyl plastisol/wood flour composites exposed to ultraviolet radiation. Materials & Design, 108, 648-658. doi:10.1016/j.matdes.2016.07.037Negoro, T., Thodsaratpreeyakul, W., Takada, Y., Thumsorn, S., Inoya, H., & Hamada, H. (2016). Role of Crystallinity on Moisture Absorption and Mechanical Performance of Recycled PET Compounds. Energy Procedia, 89, 323-327. doi:10.1016/j.egypro.2016.05.042Badía, J. D., Vilaplana, F., Karlsson, S., & Ribes-Greus, A. (2009). Thermal analysis as a quality tool for assessing the influence of thermo-mechanical degradation on recycled poly(ethylene terephthalate). Polymer Testing, 28(2), 169-175. doi:10.1016/j.polymertesting.2008.11.01
    corecore