19 research outputs found

    The role of FGF signaling during early heart and proepicardium development in the chick embryo

    No full text
    In dieser Arbeit sollte die Funktion von FGF-Signalen im Herzfeld und in der Entwicklung des Proepikards im HĂŒhnerembryo untersucht werden. Fibroblasten-Wachstumsfaktoren (FGF) sind eine große Gruppe von SignalmolekĂŒlen und in eine Vielzahl von Entwicklungsprozessen involviert. Das Proepikard (PE), welches sich asymmetrisch auf dem rechten Sinushorn des Sinus venosus entwickelt, bildet die Grundlage des KoronargefĂ€ĂŸsystems des Herzens. FGF-Liganden (FGF2, FGF10, FGF12) werden insbesondere in den epithelialen Zellen des Proepikards exprimiert, sowie an der sinomyokardialen Basis dieser embryonalen Progenitorpopulation. Die FGF-Rezeptoren (FGFR1, FGFR2, FGFR4) weisen ein Ă€hnliches Expressionsmuster auf und deren Inhibition, durch spezifische Antagonisten, war der Ausgangspunkt fĂŒr die funktionelle Analyse der proepikardialen FGF-SignalaktivitĂ€t. Die Inhibition von FGF-Signalen in vitro fĂŒhrt zu einem verringerten Wachstum sowie einer erhöhten Apoptoserate in proepikardialen Explantaten, die unter serumfreien Bedingungen kultiviert wurden. Es konnte gezeigt werden, dass sowohl der Ras/MAPK- als auch der PI3-Kinase-Signalweg, beides Bestandteile der FGF-Signaltransduktion, fĂŒr das Wachstum und Überleben proepikardialer Zellen verantwortlich sind. Dagegen sind FGF-Signale nicht in die Etablierung proepikardialer IdentitĂ€t involviert, wie die Analyse der Expression etablierter proepikardialer Markergene wie TBX18, WT1 und TBX5 nach FGF-Inhibition zeigte. Dies konnte gleichfalls durch in vivo-Experimente gezeigt werden, in denen die rechtsseitige Inhibition von FGF zu einem retardierten Proepikardwachstum fĂŒhrte. Weiterhin konnte gezeigt werden, dass die asymmetrische Apoptose in der sich transient entwickelnden linksseitigen Proepikardanlage auf eine frĂŒhe differentielle Expression von Apoptosegenen wie Caspase 2 zurĂŒckgeht. Diese asymmetrische Expression wird von FGF8 reguliert, wahrscheinlich als Teil eines frĂŒhen rechtsseitigen Signalweges, der Apoptose im rechten Sinushorn des kardialen Einflusstraktes verhindert. Im zweiten Teil der Arbeit wurde die Expression der Hyaluronansynthase 2 (HAS2) in AbhĂ€ngigkeit von FGF in der Herzfeldregion analysiert. Hyaluronansynthasen produzieren HyaluronsĂ€ure, welches eine essentielle Komponente der extrazellulĂ€ren Matrix ist. Es wurde in vivo gezeigt, dass die Expression von HAS2 im primĂ€ren Herzfeld in gleicher Weise von FGF reguliert wird wie die des kardialen Transkriptionsfaktors NKX2.5. Die Ergebnisse dieser Arbeit verdeutlichen, dass FGF wĂ€hrend der frĂŒhen Entwicklung des Herzens und der Entstehung des Proepikards diverse Funktionen besitzt.The aim of this study was the functional analysis of FGF signaling during early heart field formation and proepicardial development in the chick embryo. Fibroblast growth factors (FGF) belong to a large group of signaling molecules and play crucial roles in many different developmental processes. The proepicardium (PE) develops asymmetrically on the right sinus horn of the cardiac inflow tract and is the source of the coronary vasculature of the heart. FGF ligands (FGF2, FGF10, and FGF12) are specifically expressed in epithelial cells of the proepicardium as well as in the underlying inflow tract myocardium. FGF receptors (FGFR1, FGFR2, and FGFR4) display similar expression patterns in the proepicardium and their inhibition by specific antagonists was the entry point into the functional analysis of FGF signaling in proepicardial cells. The inhibition of FGF signaling in vitro leads to retarded outgrowth as well as increased apoptosis in proepicardial explants, which were cultured under serum free conditions. It was shown that both Ras/MAPK and PI3 kinase signaling as integral parts of FGF signaling transduction are responsible for growth and survival of proepicardial cells in this context. However, FGF signaling is not involved in the establishment of proepicardial identity as shown by the maintenance of expression of well-established proepicardial marker genes such as TBX18, WT1 and TBX5 after FGF inhibition. These findings were verified by in vivo experiments, showing that inhibition of FGF leads to retarded outgrowth of the proepicardium. Furthermore it was shown that asymmetric apoptosis in a transiently established left-sided PE-anlage is based on an early differential expression of apoptosis-inducing genes like Caspase 2. This asymmetric expression is regulated by FGF8 probably as part of an early right-sided signaling pathway, which prevents apoptosis in the right sinus horn of the cardiac inflow tract. In a second topic of this thesis the expression of the hyaluronan synthase 2 (HAS2) in the control of FGF signaling during early heart field formation was analyzed. Hyaluronan synthases are involved in the production of hyaluronic acid, which is an essential component of the extracellular matrix. The role of FGF signaling was tested in vivo and it is shown here, that the expression of HAS2 in the primary heart field is dependent on FGF as well as other cardiac marker genes such as the transcription factor NKX2.5. This thesis demonstrates that FGF has multiple roles during early heart development and formation of the proepicardium

    Isolation and culture of mouse proepicardium using serum-free conditions

    No full text
    The Proepicardium (PE) is an embryonic tissue that gives rise to multipotent vascular progenitors. Most notably the PE gives rise to the epicardium, cardiac fibroblasts, myocardium, and coronary vessels including both vascular smooth muscle and vascular endothelium. Much attention has been given to epicardial-derived cells that show the capacity to differentiate into a wide variety of vascular progenitors including cardiomyocytes. However, it is the PE itself that possesses the greatest potential as a source of multipotent vascular progenitors. We show here a simple method to manually isolate mouse PE at the ninth day of mouse embryonic development and culture highly pure PE tissue in serum-free conditions. This PE culture method allows for the ex vivo analysis of specific growth factors on PE and epicardial development with greater efficiency and precision than existing epicardial culture methods

    Popeye domain containing proteins are essential for stress-mediated modulation of cardiac pacemaking in mice

    Get PDF
    Cardiac pacemaker cells create rhythmic pulses that control heart rate; pacemaker dysfunction is a prevalent disorder in the elderly, but little is known about the underlying molecular causes. Popeye domain containing (Popdc) genes encode membrane proteins with high expression levels in cardiac myocytes and specifically in the cardiac pacemaking and conduction system. Here, we report the phenotypic analysis of mice deficient in Popdc1 or Popdc2. ECG analysis revealed severe sinus node dysfunction when freely roaming mutant animals were subjected to physical or mental stress. In both mutants, bradyarrhythmia developed in an age-dependent manner. Furthermore, we found that the conserved Popeye domain functioned as a high-affinity cAMP-binding site. Popdc proteins interacted with the potassium channel TREK-1, which led to increased cell surface expression and enhanced current density, both of which were negatively modulated by cAMP. These data indicate that Popdc proteins have an important regulatory function in heart rate dynamics that is mediated, at least in part, through cAMP binding. Mice with mutant Popdc1 and Popdc2 alleles are therefore useful models for the dissection of the mechanisms causing pacemaker dysfunction and could aid in the development of strategies for therapeutic intervention
    corecore