36 research outputs found

    Sex dimorphism in the myocardial response to aortic stenosis

    Get PDF
    Objectives: The goal of this study was to explore sex differences in myocardial remodeling in aortic stenosis (AS) by using echocardiography, cardiac magnetic resonance (CMR), and biomarkers. Background: AS is a disease of both valve and left ventricle (LV). Sex differences in LV remodeling are reported in AS and may play a role in disease phenotyping. Methods: This study was a prospective assessment of patients awaiting surgical valve replacement for severe AS using echocardiography, the 6-min walking test, biomarkers (high-sensitivity troponin T and N-terminal pro-brain natriuretic peptide), and CMR with late gadolinium enhancement and extracellular volume fraction, which dichotomizes the myocardium into matrix and cell volumes. LV remodeling was categorized into normal geometry, concentric remodeling, concentric hypertrophy, and eccentric hypertrophy

    An accurate and time-efficient deep learning-based system for automated segmentation and reporting of cardiac magnetic resonance-detected ischemic scar

    Get PDF
    Background and objectives: Myocardial infarction scar (MIS) assessment by cardiac magnetic resonance provides prognostic information and guides patients' clinical management. However, MIS segmentation is time-consuming and not performed routinely. This study presents a deep-learning-based computational workflow for the segmentation of left ventricular (LV) MIS, for the first time performed on state-of-the-art dark-blood late gadolinium enhancement (DB-LGE) images, and the computation of MIS transmurality and extent.Methods: DB-LGE short-axis images of consecutive patients with myocardial infarction were acquired at 1.5T in two centres between Jan 1, 2019, and June 1, 2021. Two convolutional neural network (CNN) mod-els based on the U-Net architecture were trained to sequentially segment the LV and MIS, by processing an incoming series of DB-LGE images. A 5-fold cross-validation was performed to assess the performance of the models. Model outputs were compared respectively with manual (LV endo-and epicardial border) and semi-automated (MIS, 4-Standard Deviation technique) ground truth to assess the accuracy of the segmentation. An automated post-processing and reporting tool was developed, computing MIS extent (expressed as relative infarcted mass) and transmurality.Results: The dataset included 1355 DB-LGE short-axis images from 144 patients (MIS in 942 images). High performance (> 0.85) as measured by the Intersection over Union metric was obtained for both the LV and MIS segmentations on the training sets. The performance for both LV and MIS segmentations was 0.83 on the test sets.Compared to the 4-Standard Deviation segmentation technique, our system was five times quicker ( <1 min versus 7 +/- 3 min), and required minimal user interaction. Conclusions: Our solution successfully addresses different issues related to automatic MIS segmentation, including accuracy, time-effectiveness, and the automatic generation of a clinical report.(c) 2022 Elsevier B.V. All rights reserved

    May Measurement Month 2019: an analysis of blood pressure screening results from Italy

    Get PDF
    : Cardiovascular (CV) diseases are burdened by high mortality and morbidity, being responsible for half of the deaths in Europe. Although hypertension is recognized as the most important CV risk factor, hypertension awareness, and blood pressure (BP) control are still unsatisfactory. In 2017 and 2018, respectively >10 000 and >5000 individuals took part in the May Measurement Month (MMM) campaign in Italy, of whom 30.6% and 26.3% were found to have high BP, respectively. To raise public awareness on the importance of hypertension and to collect BP data on a nation-wide scale in Italy. In the frame of the MMM campaign, an opportunistic cross-sectional survey of volunteers aged ≥18 years was carried out in May 2019. BP measurement, the definition of hypertension, and statistical analysis followed the standard MMM protocol. Screening was conducted in multiple sites by health personnel. Among the 10 182 people screened (females: 52.3%, mean age 58 ± 16years) mean BP was 127/78 mmHg, and 3171 (31.1%) participants had arterial hypertension, of whom 62.1% were aware of being hypertensive. Diabetes, body mass index >25 kg/m2 were associated with higher BP and previous myocardial infarction with lower BP. For the third consecutive year we collected a nation-wide snapshot of BP control in a large sample of individuals. The high participation, with some yearly fluctuations likely due to the limitations of the sampling technique, confirms the power of this kind of health campaign in reaching a significant number of people to raise awareness on health topics

    Artificial intelligence-assisted quantification of COVID-19 pneumonia burden from computed tomography improves prediction of adverse outcomes over visual scoring systems

    Get PDF
    Objective:We aimed to evaluate the effectiveness of utilizing artificial intelligence (AI) to quantify the extent of pneumonia from chest CT scans, and to determine its ability to predict clinical deterioration or mortality in patients admitted to the hospital with COVID-19 in comparison to semi-quantitative visual scoring systems.Methods:A deep-learning algorithm was utilized to quantify the pneumonia burden, while semi-quantitative pneumonia severity scores were estimated through visual means. The primary outcome was clinical deterioration, the composite end point including admission to the intensive care unit, need for invasive mechanical ventilation, or vasopressor therapy, as well as in-hospital death.Results:The final population comprised 743 patients (mean age 65  ±  17 years, 55% men), of whom 175 (23.5%) experienced clinical deterioration or death. The area under the receiver operating characteristic curve (AUC) for predicting the primary outcome was significantly higher for AI-assisted quantitative pneumonia burden (0.739, p = 0.021) compared with the visual lobar severity score (0.711, p < 0.001) and visual segmental severity score (0.722, p = 0.042). AI-assisted pneumonia assessment exhibited lower performance when applied for calculation of the lobar severity score (AUC of 0.723, p = 0.021). Time taken for AI-assisted quantification of pneumonia burden was lower (38 ± 10 s) compared to that of visual lobar (328 ± 54 s, p < 0.001) and segmental (698 ± 147 s, p < 0.001) severity scores.Conclusion:Utilizing AI-assisted quantification of pneumonia burden from chest CT scans offers a more accurate prediction of clinical deterioration in patients with COVID-19 compared to semi-quantitative severity scores, while requiring only a fraction of the analysis time.Advances in knowledge:Quantitative pneumonia burden assessed using AI demonstrated higher performance for predicting clinical deterioration compared to current semi-quantitative scoring systems. Such an AI system has the potential to be applied for image-based triage of COVID-19 patients in clinical practice

    Разработка и исследование конструкции привода управляемого задерживающего устройства шароструйно-эжекторного бурового снаряда

    Get PDF
    В работе рассмотрены принципы шароструйного бурения, а так же устройство шаростуйно-эжекторного снаряда. Предложены варианты модернизации данного снаряда.In this paper, the principles of pellet impact drilling, as well as the construction of a pellet-ejector projectile, are considered. Variants of modernization of this projectile are offered

    A medical device-grade T1 and ECV phantom for global T1 mapping quality assurance - the T1_1 Mapping and ECV Standardization in cardiovascular magnetic resonance (T1MES) program

    Get PDF
    Background:\textbf{Background:} T1_1 mapping and extracellular volume (ECV) have the potential to guide patient care and serve as surrogate end-points in clinical trials, but measurements differ between cardiovascular magnetic resonance (CMR) scanners and pulse sequences. To help deliver T1_1 mapping to global clinical care, we developed a phantom-based quality assurance (QA) system for verification of measurement stability over time at individual sites, with further aims of generalization of results across sites, vendor systems, software versions and imaging sequences. We thus created T1MES: The T1 Mapping and ECV Standardization Program. Methods:\textbf{Methods:} A design collaboration consisting of a specialist MRI small-medium enterprise, clinicians, physicists and national metrology institutes was formed. A phantom was designed covering clinically relevant ranges of T1_1 and T2_2 in blood and myocardium, pre and post-contrast, for 1.5 T and 3 T. Reproducible mass manufacture was established. The device received regulatory clearance by the Food and Drug Administration (FDA) and Conformité Européene (CE) marking. Results:\textbf{Results:} The T1MES phantom is an agarose gel-based phantom using nickel chloride as the paramagnetic relaxation modifier. It was reproducibly specified and mass-produced with a rigorously repeatable process. Each phantom contains nine differently-doped agarose gel tubes embedded in a gel/beads matrix. Phantoms were free of air bubbles and susceptibility artifacts at both field strengths and T1_1 maps were free from off-resonance artifacts. The incorporation of high-density polyethylene beads in the main gel fill was effective at flattening the B1B_1 field. T1_1 and T2_2 values measured in T1MES showed coefficients of variation of 1 % or less between repeat scans indicating good short-term reproducibility. Temperature dependency experiments confirmed that over the range 15-30 °C the short-T1_1 tubes were more stable with temperature than the long-T1_1 tubes. A batch of 69 phantoms was mass-produced with random sampling of ten of these showing coefficients of variations for T1_1 of 0.64 ± 0.45 % and 0.49 ± 0.34 % at 1.5 T and 3 T respectively. Conclusion:\textbf{Conclusion:} The T1MES program has developed a T1_1 mapping phantom to CE/FDA manufacturing standards. An initial 69 phantoms with a multi-vendor user manual are now being scanned fortnightly in centers worldwide. Future results will explore T1_1 mapping sequences, platform performance, stability and the potential for standardization.This project has been funded by a European Association of Cardiovascular Imaging (EACVI part of the ESC) Imaging Research Grant, a UK National Institute of Health Research (NIHR) Biomedical Research Center (BRC) Cardiometabolic Research Grant at University College London (UCL, #BRC/ 199/JM/101320), and a Barts Charity Research Grant (#1107/2356/MRC0140). G.C. is supported by the National Institute for Health Research Rare Diseases Translational Research Collaboration (NIHR RD-TRC) and by the NIHR UCL Hospitals Biomedical Research Center. J.C.M. is directly and indirectly supported by the UCL Hospitals NIHR BRC and Biomedical Research Unit at Barts Hospital respectively. This work was in part supported by an NIHR BRC award to Cambridge University Hospitals NHS Foundation Trust and NIHR Cardiovascular Biomedical Research Unit support at Royal Brompton Hospital London UK

    May Measurement Month 2018: a pragmatic global screening campaign to raise awareness of blood pressure by the International Society of Hypertension

    Get PDF
    Aims Raised blood pressure (BP) is the biggest contributor to mortality and disease burden worldwide and fewer than half of those with hypertension are aware of it. May Measurement Month (MMM) is a global campaign set up in 2017, to raise awareness of high BP and as a pragmatic solution to a lack of formal screening worldwide. The 2018 campaign was expanded, aiming to include more participants and countries. Methods and results Eighty-nine countries participated in MMM 2018. Volunteers (≥18 years) were recruited through opportunistic sampling at a variety of screening sites. Each participant had three BP measurements and completed a questionnaire on demographic, lifestyle, and environmental factors. Hypertension was defined as a systolic BP ≥140 mmHg or diastolic BP ≥90 mmHg, or taking antihypertensive medication. In total, 74.9% of screenees provided three BP readings. Multiple imputation using chained equations was used to impute missing readings. 1 504 963 individuals (mean age 45.3 years; 52.4% female) were screened. After multiple imputation, 502 079 (33.4%) individuals had hypertension, of whom 59.5% were aware of their diagnosis and 55.3% were taking antihypertensive medication. Of those on medication, 60.0% were controlled and of all hypertensives, 33.2% were controlled. We detected 224 285 individuals with untreated hypertension and 111 214 individuals with inadequately treated (systolic BP ≥ 140 mmHg or diastolic BP ≥ 90 mmHg) hypertension. Conclusion May Measurement Month expanded significantly compared with 2017, including more participants in more countries. The campaign identified over 335 000 adults with untreated or inadequately treated hypertension. In the absence of systematic screening programmes, MMM was effective at raising awareness at least among these individuals at risk
    corecore