17 research outputs found
Characterization of Notch1 Antibodies That Inhibit Signaling of Both Normal and Mutated Notch1 Receptors
Notch receptors normally play a key role in guiding a variety of cell fate decisions during development and differentiation of metazoan organisms. On the other hand, dysregulation of Notch1 signaling is associated with many different types of cancer as well as tumor angiogenesis, making Notch1 a potential therapeutic target.Here we report the in vitro activities of inhibitory Notch1 monoclonal antibodies derived from cell-based and solid-phase screening of a phage display library. Two classes of antibodies were found, one directed against the EGF-repeat region that encompasses the ligand-binding domain (LBD), and the second directed against the activation switch of the receptor, the Notch negative regulatory region (NRR). The antibodies are selective for Notch1, inhibiting Jag2-dependent signaling by Notch1 but not by Notch 2 and 3 in reporter gene assays, with EC(50) values as low as 5+/-3 nM and 0.13+/-0.09 nM for the LBD and NRR antibodies, respectively, and fail to recognize Notch4. While more potent, NRR antibodies are incomplete antagonists of Notch1 signaling. The antagonistic activity of LBD, but not NRR, antibodies is strongly dependent on the activating ligand. Both LBD and NRR antibodies bind to Notch1 on human tumor cell lines and inhibit the expression of sentinel Notch target genes, including HES1, HES5, and DTX1. NRR antibodies also strongly inhibit ligand-independent signaling in heterologous cells transiently expressing Notch1 receptors with diverse NRR "class I" point mutations, the most common type of mutation found in human T-cell acute lymphoblastic leukemia (T-ALL). In contrast, NRR antibodies failed to antagonize Notch1 receptors bearing rare "class II" or "class III" mutations, in which amino acid insertions generate a duplicated or constitutively sensitive metalloprotease cleavage site. Signaling in T-ALL cell lines bearing class I mutations is partially refractory to inhibitory antibodies as compared to cell-penetrating gamma-secretase inhibitors.Antibodies that compete with Notch1 ligand binding or that bind to the negative regulatory region can act as potent inhibitors of Notch1 signaling. These antibodies may have clinical utility for conditions in which inhibition of signaling by wild-type Notch1 is desired, but are likely to be of limited value for treatment of T-ALLs associated with aberrant Notch1 activation
Proteomic signatures for perioperative oxygen delivery in skin after major elective surgery: mechanistic sub-study of a randomised controlled trial
Background Maintaining adequate oxygen delivery (DO2) after major surgery is associated with minimising organ dysfunction. Skin is particularly vulnerable to reduced DO2. We tested the hypothesis that reduced perioperative DO2 fuels inflammation in metabolically compromised skin after major surgery. Methods Participants undergoing elective oesophagectomy were randomised immediately after surgery to standard of care or haemodynamic therapy to achieve their individualised preoperative DO2. Abdominal punch skin biopsies were snap-frozen before and 48 h after surgery. On-line two-dimensional liquid chromatography and ultra-high-definition label-free mass spectrometry was used to characterise the skin proteome. The primary outcome was proteomic changes compared between normal (≥preoperative value before induction of anaesthesia) and low DO2 (<preoperative value before induction of anaesthesia) after surgery. Secondary outcomes were functional enrichment analysis of up/down-regulated proteins (Ingenuity pathway analysis; STRING Protein-Protein Interaction Networks). Immunohistochemistry and immunoblotting confirmed selected proteomic findings in skin biopsies obtained from patients after hepatic resection. Results Paired punch skin biopsies were obtained from 35 participants (mean age: 68 yr; 31% female), of whom 17 underwent oesophagectomy. There were 14/2096 proteins associated with normal (n=10) vs low (n=7) DO2 after oesophagectomy. Failure to maintain preoperative DO2 was associated with upregulation of proteins counteracting oxidative stress. Normal DO2 after surgery was associated with pathways involving leucocyte recruitment and upregulation of an antimicrobial peptidoglycan recognition protein. Immunohistochemistry (n=6 patients) and immunoblots after liver resection (n=12 patients) supported the proteomic findings. Conclusions Proteomic profiles in serial skin biopsies identified organ-protective mechanisms associated with normal DO2 after major surgery
Recommended from our members
Governing New Technologies that Stop Biological Time: Preparing for Prolonged Biopreservation of Human Organs in Transplantation
Time limits on organ viability from retrieval to implantation shape the US system for human organ transplantation. Preclinical research has demonstrated that emerging biopreservation technologies can prolong organ viability, perhaps indefinitely. These technologies could transform transplantation into a scheduled procedure without geographic or time constraints, permitting organ assessment and potential preconditioning of the recipients. However, the safety and efficacy of advanced biopreservation with prolonged storage of vascularized organs followed by reanimation will require new regulatory oversight, as clinicians and transplant centers are not trained in the engineering techniques involved or equipped to assess the manipulated organs. Although the Food and Drug Administration is best situated to provide that process oversight, the agency has until now declined to oversee organ quality and has excluded vascularized organs from the oversight framework of HCT/Ps. Integration of advanced biopreservation technologies will require new facilities for organ preservation, storage, and reanimation plus ethical guidance on immediate organ use versus preservation, national allocation, and governance of centralized organ banks. Realization of the long-term benefit of advanced biopreservation requires anticipation of the necessary legal and ethical oversight tools and that process should begin now
Comparative Immunogenicity in Rhesus Monkeys of DNA Plasmid, Recombinant Vaccinia Virus, and Replication-Defective Adenovirus Vectors Expressing a Human Immunodeficiency Virus Type 1 gag Gene
Cellular immune responses, particularly those associated with CD3(+) CD8(+) cytotoxic T lymphocytes (CTL), play a primary role in controlling viral infection, including persistent infection with human immunodeficiency virus type 1 (HIV-1). Accordingly, recent HIV-1 vaccine research efforts have focused on establishing the optimal means of eliciting such antiviral CTL immune responses. We evaluated several DNA vaccine formulations, a modified vaccinia virus Ankara vector, and a replication-defective adenovirus serotype 5 (Ad5) vector, each expressing the same codon-optimized HIV-1 gag gene for immunogenicity in rhesus monkeys. The DNA vaccines were formulated with and without one of two chemical adjuvants (aluminum phosphate and CRL1005). The Ad5-gag vector was the most effective in eliciting anti-Gag CTL. The vaccine produced both CD4(+) and CD8(+) T-cell responses, with the latter consistently being the dominant component. To determine the effect of existing antiadenovirus immunity on Ad5-gag-induced immune responses, monkeys were exposed to adenovirus subtype 5 that did not encode antigen prior to immunization with Ad5-gag. The resulting anti-Gag T-cell responses were attenuated but not abolished. Regimens that involved priming with different DNA vaccine formulations followed by boosting with the adenovirus vector were also compared. Of the formulations tested, the DNA-CRL1005 vaccine primed T-cell responses most effectively and provided the best overall immune responses after boosting with Ad5-gag. These results are suggestive of an immunization strategy for humans that are centered on use of the adenovirus vector and in which existing adenovirus immunity may be overcome by combined immunization with adjuvanted DNA and adenovirus vector boosting