20 research outputs found

    Colocalization of synapsin and actin during synaptic vesicle recycling

    Get PDF
    It has been hypothesized that in the mature nerve terminal, interactions between synapsin and actin regulate the clustering of synaptic vesicles and the availability of vesicles for release during synaptic activity. Here, we have used immunogold electron microscopy to examine the subcellular localization of actin and synapsin in the giant synapse in lamprey at different states of synaptic activity. In agreement with earlier observations, in synapses at rest, synapsin immunoreactivity was preferentially localized to a portion of the vesicle cluster distal to the active zone. During synaptic activity, however, synapsin was detected in the pool of vesicles proximal to the active zone. In addition, actin and synapsin were found colocalized in a dynamic filamentous cytomatrix at the sites of synaptic vesicle recycling, endocytic zones. Synapsin immunolabeling was not associated with clathrin-coated intermediates but was found on vesicles that appeared to be recycling back to the cluster. Disruption of synapsin function by microinjection of antisynapsin antibodies resulted in a prominent reduction of the cytomatrix at endocytic zones of active synapses. Our data suggest that in addition to its known function in clustering of vesicles in the reserve pool, synapsin migrates from the synaptic vesicle cluster and participates in the organization of the actin-rich cytomatrix in the endocytic zone during synaptic activity

    Spinal Cord Injury Reveals Multilineage Differentiation of Ependymal Cells

    Get PDF
    Spinal cord injury often results in permanent functional impairment. Neural stem cells present in the adult spinal cord can be expanded in vitro and improve recovery when transplanted to the injured spinal cord, demonstrating the presence of cells that can promote regeneration but that normally fail to do so efficiently. Using genetic fate mapping, we show that close to all in vitro neural stem cell potential in the adult spinal cord resides within the population of ependymal cells lining the central canal. These cells are recruited by spinal cord injury and produce not only scar-forming glial cells, but also, to a lesser degree, oligodendrocytes. Modulating the fate of ependymal progeny after spinal cord injury may offer an alternative to cell transplantation for cell replacement therapies in spinal cord injury

    Phenological shifts of abiotic events, producers and consumers across a continent

    Get PDF
    Ongoing climate change can shift organism phenology in ways that vary depending on species, habitats and climate factors studied. To probe for large-scale patterns in associated phenological change, we use 70,709 observations from six decades of systematic monitoring across the former Union of Soviet Socialist Republics. Among 110 phenological events related to plants, birds, insects, amphibians and fungi, we find a mosaic of change, defying simple predictions of earlier springs, later autumns and stronger changes at higher latitudes and elevations. Site mean temperature emerged as a strong predictor of local phenology, but the magnitude and direction of change varied with trophic level and the relative timing of an event. Beyond temperature-associated variation, we uncover high variation among both sites and years, with some sites being characterized by disproportionately long seasons and others by short ones. Our findings emphasize concerns regarding ecosystem integrity and highlight the difficulty of predicting climate change outcomes. The authors use systematic monitoring across the former USSR to investigate phenological changes across taxa. The long-term mean temperature of a site emerged as a strong predictor of phenological change, with further imprints of trophic level, event timing, site, year and biotic interactions.Peer reviewe

    Chronicles of nature calendar, a long-term and large-scale multitaxon database on phenology

    Get PDF
    We present an extensive, large-scale, long-term and multitaxon database on phenological and climatic variation, involving 506,186 observation dates acquired in 471 localities in Russian Federation, Ukraine, Uzbekistan, Belarus and Kyrgyzstan. The data cover the period 1890-2018, with 96% of the data being from 1960 onwards. The database is rich in plants, birds and climatic events, but also includes insects, amphibians, reptiles and fungi. The database includes multiple events per species, such as the onset days of leaf unfolding and leaf fall for plants, and the days for first spring and last autumn occurrences for birds. The data were acquired using standardized methods by permanent staff of national parks and nature reserves (87% of the data) and members of a phenological observation network (13% of the data). The database is valuable for exploring how species respond in their phenology to climate change. Large-scale analyses of spatial variation in phenological response can help to better predict the consequences of species and community responses to climate change.Peer reviewe

    Technique for Determining the Potential Use of Disturbed Lands for Agriculture in Mining Region

    No full text
    The retrospective dynamics of land use in the Kemerovo region since the Soviet period is presented in the study. The survey of views of the scientific community regarding the development of reclamation of lands allocated to industry was conducted. The statistics are reflected: areas of lands disturbed by the activities of open pits and mines in the mining region; the number of land law violations; land retirement. A technique is presented for determining the potential use of disturbed lands for agriculture in order to identify their suitability or unsuitability for reclamation; its algorithm including seven consecutive stages is presented. Indicators that contribute to maximizing income from each plot suitable for long-term agricultural reclamation were selected

    Mathematical modeling of heat-trapping properties of a developed radiator surface in mechanical engineering

    No full text
    In this work the research of heat-removing properties of areas of extended surfaces, for example, of finned and needle radiators for assessment of efficiency of distribution of a thermal field and heat extraction is described. Also the description of the carried-out computational modeling is provided in the Fluent processor of universal program system of the final and element analysis Ansys. The relevance of the selected subject is confirmed by the fact that one of the most important and difficult tasks arising when developing the electronic equipment is a withdrawal of heat generated by it. At a current steady trend in reduction of dimensions of electronic devices this problem does not disappear, and opposite, becomes more and more sharp, and that is stronger, than device high power less its physical volume, and not only the efficiency of heat extraction, but also dimensions and, of course, reliability of operation of electronic devices depends on constructions of heat-removing elements. In work the conclusion is drawn that for a solution of a complex problem of assessment of efficiency of the heat sink for the purpose of decrease in temperature of heatterminated element, it is necessary to use electrothermal analogy

    A pre-embedding immunogold approach for detection of synaptic endocytic proteins in situ

    Get PDF
    During the past decade, many molecular components of clathrin-mediated endocytosis have been identified and proposed to play various hypothetical roles in the process [Nat. Rev. Neurosci. 1 (2000) 161; Nature 422 (2003) 37]. One limitation to the evaluation of these hypotheses is the efficiency and resolution of immunolocalization protocols currently in use. In order to facilitate the evaluation of these hypotheses and to understand more fully the molecular mechanisms of clathrin-mediated endocytosis, we have developed a protocol allowing enhanced and reliable subcellular immunolocalization of proteins in synaptic endocytic zones in situ. Synapses established by giant reticulospinal axons in lamprey are used as a model system for these experiments. These axons are unbranched and reach up to 80-100μm in diameter. Synaptic active zones and surrounding endocytic zones are established on the surface of the axonal cylinder. To provide access for antibodies to the sites of synaptic vesicle recycling, axons are lightly fixed and cut along their longitudinal axis. To preserve the ultrastructure of the synaptic endocytic zone, antibodies are applied without the addition of detergents. Opened axons are incubated with primary antibodies, which are detected with secondary antibodies conjugated to gold particles. Specimens are then post-fixed and processed for electron microscopy. This approach allows preservation of the ultrastructure of the endocytic sites during immunolabeling procedures, while simultaneously achieving reliable immunogold detection of proteins on endocytic intermediates. To explore the utility of this approach, we have investigated the localization of a GTPase, dynamin, on clathrin-coated intermediates in the endocytic zone of the lamprey giant synapse. Using the present immunogold protocol, we confirm the presence of dynamin on late stage coated pits [Nature 422 (2003) 37] and also demonstrate that dynamin is recruited to the coat of endocytic intermediates from the very early stages of the clathrin coat formation. Thus, our experiments show that the current pre-embedding immunogold method is a useful experimental tool to study the molecular mechanisms of synaptic vesicle recycling.Fil: Evergren, Emma. Center of Excellence in Developmental Biology; SueciaFil: Tomilin, Nikolay. Center of Excellence in Developmental Biology; SueciaFil: Vasylieva, Elena. Center of Excellence in Developmental Biology; SueciaFil: Sergeeva, Victoria. Center of Excellence in Developmental Biology; SueciaFil: Bloom, Ona. University of Yale; Estados UnidosFil: Gad, Helge. Center of Excellence in Developmental Biology; SueciaFil: Capani, Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Shupliakov, Oleg. Center of Excellence in Developmental Biology; Sueci
    corecore