170 research outputs found

    Mechanistic and functional studies of the interaction of a proline-rich antimicrobial peptide with mammalian cells.

    Get PDF
    Mammalian antimicrobial peptides provide rapid defense against infection by inactivating pathogens and by influencing the functions of cells involved in defense responses. Although the direct antibacterial properties of these peptides have been widely characterized, their multiple effects on host cells are only beginning to surface. Here we investigated the mechanistic and functional aspects of the interaction of the proline-rich antimicrobial peptide Bac7(1-35) with mammalian cells, as compared with a truncated analog, Bac7(5-35), lacking four critical N-terminal residues (RRIR) of the Bac7(1-35) sequence. By using confocal microscopy and flow cytometry, we showed that although the truncated analog Bac7(5-35) remains on the cell surface, Bac7(1-35) is rapidly taken up into 3T3 and U937 cells through a nontoxic energy- and temperature-dependent process. Cell biology-based assays using selective endocytosis inhibitors and spectroscopic and surface plasmon resonance studies of the interaction of Bac7(1-35) with phosphatidylcholine/cholesterol model membranes collectively suggest the concurrent contribution of macropinocytosis and direct membrane translocation. Structural studies with model membranes indicated that membrane-bound Bac7(5-35) is significantly more aggregated than Bac7(1-35) due to the absence of the N-terminal cationic cluster, thus providing an explanation for hampered cellular internalization of the truncated form. Further investigations aimed to reveal functional implications of intracellular uptake of Bac7(1-35) demonstrated that it correlates with enhanced S phase entry of 3T3 cells, indicating a novel function for this proline-rich peptide

    Exploring the biological properties and therapeutic potential of antimicrobial peptides

    Get PDF
    The researchers involved in the Trans2Care project at the Department of Medical and Biological Sciences of the University of Udine investigate the biological properties of the antimicrobial peptides (AMPs) of the immune system and their therapeutic potential for human and veterinary application. In addition to potent and broad-spectrum antimicrobial activities, some AMPs display anti-inflammatory and immunomodulatory effects and hold promise as novel antiinfective agents combining antibiotic and immunostimulating properties. A detailed knowledge of their physicochemical, biological and pharmacological properties and of their impact on clinical settings is an important prerequisite to this end. The Trans2Care project offers an invaluable opportunity to share knowledge, technical expertise and laboratory facilities to achieve a better understanding of the biological features and therapeutic potential of AMPs

    Assessing the Benefit Produced by Marine Protected Areas: The Case of Porto Cesareo Marine Protected Area (Italy)

    Get PDF
    The article focuses on the integrated environmental accounting model called ‘eValue’, developed for protected areas and applied in the research programme coordinated by the Italian Ministry of the Environment and aimed at implementing an environmental accounting system for Italian Marine Protected Areas (MPAs). eValue adopts a cost-benefit analysis approach. Financial accounting based on costs and revenues is integrated with environmental accounting, which reflects environmental costs and environmental revenues, i.e., environmental benefits. The environ-mental costs assess the impacts related to human activities in the MPA expressed by calculating the carbon footprint and the environmental benefits of the marine ecosystem services calculated by applying monetary valuation techniques. The values thus estimated flow into the annual flow account, where the value produced (or consumed) by the MPA is estimated by difference. The eValue model was applied to the Porto Cesareo MPA (Italy). eValue showed that the annual benefit-cost ratio reaches a value of 3.4. Furthermore, the ratio of net benefit to public funding is 3.7, completely covering the number of public transfers and thus summarizing the MPA overall value for money

    Selected ginsenosides of the prptopanaxdiol series are novel positive allosteric modulators of P2X7 receptors

    Get PDF
    Background and Purpose The P2X7 receptor is an ATP-gated ion channel predominantly expressed in immune cells and plays a key role in inflammatory processes. Ginseng is a well-known Chinese herb with both pro- and anti-inflammatory properties and many of its actions have been ascribed to constituent ginsenosides. We screened a number of ginsenoside compounds for pharmacological activity at P2X7 receptors, that might contribute to the reported immunomodulatory actions of ginseng. Experimental Approach We used several assays to measure responses of P2X7 receptors, ATP-mediated dye uptake, intracellular calcium measurement and whole-cell patch-clamp recordings. HEK-293 cells stably expressing human P2X7 receptors were used in addition to mouse macrophages endogenously expressing P2X7 receptors. Key Results Four ginsenosides of the protopanaxdiol series, Rb1, Rh2, Rd and the metabolite compound K (CK) potentiated the dye uptake responses of P2X7 receptors, whereas other ginsenosides tested were ineffective (1–10 μM). The potentiation was rapid in onset, required a threshold concentration of ATP (>50 μM) and had an EC50 of 1.08 μM. CK markedly enhanced ATP-activated P2X7 currents, probably via an extracellular site of action. One of the consequences of this potentiation effect is a sustained rise in intracellular Ca2+ that could account for the decrease in cell viability in mouse macrophages after a combination of 500 μM ATP and 10 μM CK that are non-toxic when applied alone. Conclusions and Implications This study identifies selected ginsenosides as novel potent allosteric modulators of P2X7 channels that may account for some of the reported immune modulatory actions of protopanaxdiol ginsenosides in vivo

    Covalent binding of the natural antimicrobial peptide indolicidin to DNA abasic sites

    Get PDF
    Indolicidin is a host defense tridecapeptide that inhibits the catalytic activity of HIV-1 integrase in vitro. Here we have elucidated its mechanism of integrase inhibition. Using crosslinking and mass spectrometric footprinting approaches, we found that indolicidin interferes with formation of the catalytic integrase-DNA complex by directly binding DNA. Further characterization revealed that the peptide forms covalent links with abasic sites. Indolicidin crosslinks single- or double-stranded DNAs and various positions of the viral cDNA with comparable efficiency. Using truncated and chemically modified peptides, we show that abasic site crosslinking is independent of the PWWP motif but involves the indolicidin unique lysine residue and the N- and C- terminal NH(2) groups. Because indolicidin can also inhibit topoisomerase I, we believe that multiple actions at the level of DNA might be a common property of antimicrobial peptides

    Crustins: enigmatic WAP domain-containing antibacterial proteins from crustaceans

    No full text
    Crustins are antibacterial proteins of ca. 7�14 kDa with a characteristic four-disulphide core-containing whey acidic protein (WAP) domain, expressed by the circulating haemocytes of crustaceans. Over 50 crustin sequences have been now reported from a variety of decapods, including crabs, lobsters, shrimp and crayfish. Three main types seem to occur but all possess a signal sequence at the amino terminus and a WAP domain at the carboxyl end. Differences between types lie in the structure of the central region. Those crustins purified as the native protein or expressed recombinantly all kill Gram-positive bacteria, and gene studies have shown that they are constitutively expressed, often at high levels, but show no consistent patterns of change in expression following injection ofbacteria. This variable response to infection is enigmatic but indicates that these proteins could perform additional functions, perhaps as immune regulators in recovery from wounding, trauma or physiological stress

    Combined systems approaches reveal highly plastic responses to antimicrobial peptide challenge in Escherichia coli

    Get PDF
    Obtaining an in-depth understanding of the arms races between peptides comprising the innate immune response and bacterial pathogens is of fundamental interest and will inform the development of new antibacterial therapeutics. We investigated whether a whole organism view of antimicrobial peptide (AMP) challenge on Escherichia coli would provide a suitably sophisticated bacterial perspective on AMP mechanism of action. Selecting structurally and physically related AMPs but with expected differences in bactericidal strategy, we monitored changes in bacterial metabolomes, morphological features and gene expression following AMP challenge at sub-lethal concentrations. For each technique, the vast majority of changes were specific to each AMP, with such a plastic response indicating E. coli is highly capable of discriminating between specific antibiotic challenges. Analysis of the ontological profiles generated from the transcriptomic analyses suggests this approach can accurately predict the antibacterial mode of action, providing a fresh, novel perspective for previous functional and biophysical studies

    Ancient Antimicrobial Peptides Kill Antibiotic-Resistant Pathogens: Australian Mammals Provide New Options

    Get PDF
    Background: To overcome the increasing resistance of pathogens to existing antibiotics the 10× 20 Initiative declared the urgent need for a global commitment to develop 10 new antimicrobial drugs by the year 2020. Naturally occurring animal antibiotics are an obvious place to start. The recently sequenced genomes of mammals that are divergent from human and mouse, including the tammar wallaby and the platypus, provide an opportunity to discover novel antimicrobials. Marsupials and monotremes are ideal potential sources of new antimicrobials because they give birth to underdeveloped immunologically naïve young that develop outside the sterile confines of a uterus in harsh pathogen-laden environments. While their adaptive immune system develops innate immune factors produced either by the mother or by the young must play a key role in protecting the immune-compromised young. In this study we focus on the cathelicidins, a key family of antimicrobial peptide genes. Principal Finding: We identified 14 cathelicidin genes in the tammar wallaby genome and 8 in the platypus genome. The tammar genes were expressed in the mammary gland during early lactation before the adaptive immune system of the young develops, as well as in the skin of the pouch young. Both platypus and tammar peptides were effective in killing a broad range of bacterial pathogens. One potent peptide, expressed in the early stages of tammar lactation, effectively killed multidrug-resistant clinical isolates of Pseudomonas aeruginosa, Klebsiella pneumoniae and Acinetobacter baumannii. Conclusions and Significance: Marsupial and monotreme young are protected by antimicrobial peptides that are potent, broad spectrum and salt resistant. The genomes of our distant relatives may hold the key for the development of novel drugs to combat multidrug-resistant pathogens

    Cathelicidin-like Helminth Defence Molecules (HDMs) Absence of Cytotoxic, Anti-microbial and Anti-protozoan Activities Imply a Specific Adaptation to Immune Modulation

    Get PDF
    Host defence peptides (HDPs) are expressed throughout the animal and plant kingdoms. They have multifunctional roles in the defence against infectious agents of mammals, possessing both bactericidal and immune-modulatory activities. We have identified a novel family of molecules secreted by helminth parasites (helminth defence molecules; HDMs) that exhibit similar structural and biochemical characteristics to the HDPs. Here, we have analyzed the functional activities of four HDMs derived from Schistosoma mansoni and Fasciola hepatica and compared them to human, mouse, bovine and sheep HDPs. Unlike the mammalian HDPs the helminth-derived HDMs show no antimicrobial activity and are non-cytotoxic to mammalian cells (macrophages and red blood cells). However, both the mammalian- and helminth-derived peptides suppress the activation of macrophages by microbial stimuli and alter the response of B cells to cytokine stimulation. Therefore, we hypothesise that HDMs represent a novel family of HDPs that evolved to regulate the immune responses of their mammalian hosts by retaining potent immune modulatory properties without causing deleterious cytotoxic effects. © 2013 Thivierge et al

    Effects of dietary carotenoids on mouse lung genomic profiles and their modulatory effects on short-term cigarette smoke exposures

    Get PDF
    Male C57BL/6 mice were fed diets supplemented with either β-carotene (BC) or lycopene (LY) that were formulated for human consumption. Four weeks of dietary supplementations results in plasma and lung carotenoid (CAR) concentrations that approximated the levels detected in humans. Bioactivity of the CARs was determined by assaying their effects on the activity of the lung transcriptome (~8,500 mRNAs). Both CARs activated the cytochrome P450 1A1 gene but only BC induced the retinol dehydrogenase gene. The contrasting effects of the two CARs on the lung transcriptome were further uncovered in mice exposed to cigarette smoke (CS) for 3 days; only LY activated ~50 genes detected in the lungs of CS-exposed mice. These genes encoded inflammatory-immune proteins. Our data suggest that mice offer a viable in vivo model for studying bioactivities of dietary CARs and their modulatory effects on lung genomic expression in both health and after exposure to CS toxicants
    corecore