79 research outputs found

    Intergovernmental Partnership, Assemble Together

    Get PDF
    Today, here in Flanders and all over the world, hierarchical approaches are making way for network approaches. Processes are being redesigned, relationships are being redefined and local administrations are being given more autonomy. In Flanders, this means that new expectations are being created between the Government of Flanders, the 5 provinces and the 308 cities and municipalities. The purpose of this paper is to show how ‘Ruimte Vlaanderen’, the Spatial Policy Department for the Government of Flanders, is taking a pole position in this shifting approach and how intergovernmental partnership is currently taking shape in urban planning

    Identification of PDL-1 as a novel biomarker of sensitizer exposure in dendritic-like cells

    Get PDF
    The development of novel in vitro methods to assess risks of allergic sensitization are essential in reducing animal testing whilst maintaining consumer safety. The main research objectives of this study were to identify novel biomarkers to assess the sensitization predictability of chemicals. Phenotypic and cytokine responses of moDCs and MUTZ-3 cells were investigated following application of contact sensitizers; dinitrochlorobenzene (DNCB), cinnamaldehyde (Cin), eugenol (E), isoeugenol (IE), P-phenylenediamine (PPD) and non-sensitizers; salicyclic acid (SA) and sodium lauryl sulphate (SLS). CD86 was up-regulated on MUTZ-3 cells in response to DNCB, Cin and PPD, however, moDCs only modulated CD86 in response to DNCB and E. PDL-1 (Programmed death receptor ligand-1) proved a promising sensitization biomarker in MUTZ-3 cells where up-regulation occurred in response to DNCB, Cin, IE and PPD. Additionally, moDC-expressed PDL-1 was modulated in response to Cin, IE and E thus demonstrating improved sensitizer predictability when compared with CD86. MCP-1 and RANTES were identified as biomarkers of DNCB exposure but MCP-1 did not show any change in expression above controls for the other sensitizers investigated. However, RANTES was increased in MUTZ-3 cells by both DNCB and Cin. Our findings highlight novel biomarkers which, in MUTZ-3 cells, could be taken forward within a multiple biomarker in vitro assay ensuring strong and reliable predictability. © 2010 Elsevier Ltd

    Exercise Intensity and Duration Effects on In Vivo Immunity

    Get PDF
    PURPOSE: To examine the effects of intensity and duration of exercise stress on induction of in vivo immunity in humans using experimental contact hypersensitivity (CHS) with the novel antigen diphenylcyclopropenone (DPCP). METHODS: Sixty-four healthy males completed either 30 min running at 60% V O2peak (30MI), 30 min running at 80% V O2peak (30HI), 120 min running at 60% V O2peak (120MI), or seated rest (CON). Twenty min later, the subjects received a sensitizing dose of DPCP; and 4 wk later, the strength of immune reactivity was quantified by measuring the cutaneous responses to a low dose-series challenge with DPCP on the upper inner arm. Circulating epinephrine, norepinephrine and cortisol were measured before, after, and 1 h after exercise or CON. Next, to understand better whether the decrease in CHS response on 120MI was due to local inflammatory or T-cell-mediated processes, in a crossover design, 11 healthy males performed 120MI and CON, and cutaneous responses to a dose series of the irritant, croton oil (CO), were assessed on the upper inner arm. RESULTS: Immune induction by DPCP was impaired by 120MI (skinfold thickness -67% vs CON; P < 0.05). However, immune induction was unaffected by 30MI and 30HI despite elevated circulating catecholamines (30HI vs pre: P < 0.01) and greater circulating cortisol post 30HI (vs CON; P < 0.01). There was no effect of 120MI on skin irritant responses to CO. CONCLUSIONS: Prolonged moderate-intensity exercise, but not short-lasting high- or short-lasting moderate-intensity exercise, decreases the induction of in vivo immunity. No effect of prolonged moderate-intensity exercise on the skin's response to irritant challenge points toward a suppression of cell-mediated immunity in the observed decrease in CHS. Diphenylcyclopropenone provides an attractive tool to assess the effect of exercise on in vivo immunity

    Dendritic Cells as Danger-Recognizing Biosensors

    Get PDF
    Dendritic cells (DCs) are antigen presenting cells that are characterized by a potent capacity to initiate immune responses. DCs comprise several subsets with distinct phenotypes. After sensing any danger(s) to the host via their innate immune receptors such as Toll-like receptors, DCs become mature and subsequently present antigens to CD4+ T cells. Since DCs possess the intrinsic capacity to polarize CD4+ helper cells, it is critical to understand the immunological roles of DCs for clinical applications. Here, we review the different DC subsets, their danger-sensing receptors and immunological functions. Furthermore, the cytokine reporter mouse model for studying DC activation is introduced

    Effects of immunomodulatory drugs on TNF-α and IL-12 production by purified epidermal langerhans cells and peritoneal macrophages

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Langerhans cells constitute a special subset of immature dendritic cells localized in the epidermis that play a key role in the skin's immune response. The production of cytokines is a key event in both the initiation and the regulation of immune responses, and different drugs can be used to remove or modify their production by DC and, therefore, alter immune responses in a broad spectrum of diseases, mainly in human inflammatory and autoimmune diseases. In the present study, we examined the effects of prednisone, thalidomide, cyclosporine A, and amitriptyline, drugs used in a variety of clinical conditions, on the production of TNF-α, IL-10, and IL-12 by purified epidermal Langerhans cells and peritoneal macrophages in BALB/c mice.</p> <p>Findings</p> <p>All drugs inhibited TNF-α production by Langerhans cells after 36 hours of treatment at two different concentrations, while prednisone and thalidomide decreased IL-12 secretion significantly, amitriptyline caused a less pronounced reduction and cyclosporine A had no effect. Additionally, TNF-α and IL-12 production by macrophages decreased, but IL-10 levels were unchanged after all treatments.</p> <p>Conclusions</p> <p>Our results demonstrate that these drugs modulate the immune response by regulating pro-inflammatory cytokine production by purified epidermal Langerhans cells and peritoneal macrophages, indicating that these cells are important targets for immunosuppression in various clinical settings.</p

    A Novel DC Therapy with Manipulation of MKK6 Gene on Nickel Allergy in Mice

    Get PDF
    BACKGROUND: Although the activation of dermal dendritic cells (DCs) or Langerhans cells (LCs) via p38 mitogen-activated protein kinase (MAPK) plays a crucial role in the pathogenesis of metal allergy, the in vivo molecular mechanisms have not been identified and a possible therapeutic strategy using the control of dermal DCs or LCs has not been established. In this study, we focused on dermal DCs to define the in vivo mechanisms of metal allergy pathogenesis in a mouse nickel (Ni) allergy model. The effects of DC therapy on Ni allergic responses were also investigated. METHODS AND FINDING: The activation of dermal DCs via p38 MAPK triggered a T cell-mediated allergic immune response in this model. In the MAPK signaling cascade in DCs, Ni potently phosphorylated MAP kinase kinase 6 (MKK6) following increased DC activation. Ni-stimulated DCs could prime T cell activation to induce Ni allergy. Interestingly, when MKK6 gene-transfected DCs were transferred into the model mice, a more pronounced allergic reaction was observed. In addition, injection of short interfering (si) RNA targeting the MKK6 gene protected against a hypersensitivity reaction after Ni immunization. The cooperative action between T cell activation and MKK6-mediated DC activation by Ni played an important role in the development of Ni allergy. CONCLUSIONS: DC activation by Ni played an important role in the development of Ni allergy. Manipulating the MKK6 gene in DCs may be a good therapeutic strategy for dermal Ni allergy

    Methyl methacrylate and respiratory sensitization: A Critical review

    Get PDF
    Methyl methacrylate (MMA) is a respiratory irritant and dermal sensitizer that has been associated with occupational asthma in a small number of case reports. Those reports have raised concern that it might be a respiratory sensitizer. To better understand that possibility, we reviewed the in silico, in chemico, in vitro, and in vivo toxicology literature, and also epidemiologic and occupational medicine reports related to the respiratory effects of MMA. Numerous in silico and in chemico studies indicate that MMA is unlikely to be a respiratory sensitizer. The few in vitro studies suggest that MMA has generally weak effects. In vivo studies have documented contact skin sensitization, nonspecific cytotoxicity, and weakly positive responses on local lymph node assay; guinea pig and mouse inhalation sensitization tests have not been performed. Cohort and cross-sectional worker studies reported irritation of eyes, nose, and upper respiratory tract associated with short-term peaks exposures, but little evidence for respiratory sensitization or asthma. Nineteen case reports described asthma, laryngitis, or hypersensitivity pneumonitis in MMA-exposed workers; however, exposures were either not well described or involved mixtures containing more reactive respiratory sensitizers and irritants.The weight of evidence, both experimental and observational, argues that MMA is not a respiratory sensitizer

    Einleitung Teil III

    Get PDF
    corecore