57 research outputs found

    American Sign Language Translation Using Wearable Inertial and Electromyography Sensors for Tracking Hand Movements and Facial Expressions

    Get PDF
    A sign language translation system can break the communication barrier between hearing-impaired people and others. In this paper, a novel American sign language (ASL) translation method based on wearable sensors was proposed. We leveraged inertial sensors to capture signs and surface electromyography (EMG) sensors to detect facial expressions. We applied a convolutional neural network (CNN) to extract features from input signals. Then, long short-term memory (LSTM) and transformer models were exploited to achieve end-to-end translation from input signals to text sentences. We evaluated two models on 40 ASL sentences strictly following the rules of grammar. Word error rate (WER) and sentence error rate (SER) are utilized as the evaluation standard. The LSTM model can translate sentences in the testing dataset with a 7.74% WER and 9.17% SER. The transformer model performs much better by achieving a 4.22% WER and 4.72% SER. The encouraging results indicate that both models are suitable for sign language translation with high accuracy. With complete motion capture sensors and facial expression recognition methods, the sign language translation system has the potential to recognize more sentences

    Diagenesis of archaeological bone and tooth

    Get PDF
    An understanding of the structural complexity of mineralised tissues is fundamental for exploration into the field of diagenesis. Here we review aspects of current and past research on bone and tooth diagenesis using the most comprehensive collection of literature on diagenesis to date. Environmental factors such as soil pH, soil hydrology and ambient temperature, which influence the preservation of skeletal tissues are assessed, while the different diagenetic pathways such as microbial degradation, loss of organics, mineral changes, and DNA degradation are surveyed. Fluctuating water levels in and around the bone is the most harmful for preservation and lead to rapid skeletal destruction. Diagenetic mechanisms are found to work in conjunction with each other, altering the biogenic composition of skeletal material. This illustrates that researchers must examine multiple diagenetic pathways to fully understand the post-mortem interactions of archaeological skeletal material and the burial environment

    Understanding site-specific residual strain and architecture in bovine cortical bone

    Get PDF
    Living bone is considered as adaptive material to the mechanical functions, which continually undergoes change in its histological arrangement with respect to external prolonged loading. Such remodeling phenomena within bone depend on the degree of stimuli caused by the mechanical loading being experienced, and therefore, are specific to the sites. In the attempts of understanding strain adaptive phenomena within bones, different theoretical models have been proposed. Also, the existing literatures mostly follow the measurement of surface strains using strain gauges to experimentally quantify the strains experienced in the functional environment. In this work, we propose a novel idea of understanding site-specific functional adaptation to the prolonged load in bone on the basis of inherited residual strains and structural organization. We quantified the residual strains and amount of apatite crystals distribution, i.e. the degree of orientation, using X-ray diffraction procedures. The sites of naturally existing hole in bone, called foramen, are considered from bovine femur and metacarpal samples. Significant values of residual strains are found to exist in the specimens. Trends of residual strains noted in the specimens are mostly consistent with the degree of orientation of the crystallites. These features explain the response behavior of bone to the mechanical loading history near the foramen sites. Preferential orientation of crystals mapped around a femoral foramen specimen showed furnished tailored arrangement of the crystals around the hole. Effect of external loading at the femoral foramen site is also explained by the tensile loading experiment

    Gait posture estimation using wearable acceleration and gyro sensors

    Get PDF
    A method for gait analysis using wearable acceleration sensors and gyro sensors is proposed in this work. The volunteers wore sensor units that included a tri-axis acceleration sensor and three single axis gyro sensors. The angular velocity data measured by the gyro sensors were used to estimate the translational acceleration in the gait analysis. The translational acceleration was then subtracted from the acceleration sensor measurements to obtain the gravitational acceleration, giving the orientation of the lower limb segments. Segment orientation along with body measurements were used to obtain the positions of hip, knee, and ankle joints to create stick figure models of the volunteers. This method can measure the three dimensional positions of joint centers of the hip, knee, and ankle during movement. Experiments were carried out on the normal gait of three healthy volunteers. As a result, the flexion-extension (F-E) and the adduction-abduction (A-A) joint angles of the hips and the flexion-extension (F-E) joint angles of the knees were calculated and compared with a camera motion capture system. The correlation coefficients were above 0.88 for the hip F-E, higher than 0.721 for the hip A-A, better than 0.924 for the knee F-E. A moving stick figure model of each volunteer was created to visually confirm the walking posture. Further, the knee and ankle joint trajectories in the horizontal plane showed that the left and right legs were bilaterally symmetric

    Orientation and deformation of mineral crystals in tooth surfaces

    Get PDF
    Tooth enamel is the hardest material in the human body, and it is mainly composed of hydroxyapatite (HAp)-like mineral particles. As HAp has a hexagonal crystal structure, X-ray diffraction methods can be used to analyze the crystal structure of HAp in teeth. Here, the X-ray diffraction method was applied to the surface of tooth enamel to measure the orientation and strain of the HAp crystals. The c-axis of the hexagonal crystal structure of HAp was oriented to the surface perpendicular to the tooth enamel covering the tooth surface. Thus, the strain of HAp at the surface of teeth was measured by X-ray diffraction from the (004) lattice planes aligned along the c-axis. The X-ray strain measurements were conducted on tooth specimens with intact surfaces under loading. Highly accurate strain measurements of the surface of tooth specimens were performed by precise positioning of the X-ray irradiation area during loading. The strains of the (004) lattice plane were measured at several positions on the surface of the specimens under compression along the tooth axis. The strains were obtained as tensile strains at the labial side of incisor tooth specimens. In posterior teeth, the strains were different at different measurement positions, varying from tensile to compressive types

    Estimating Nanoscale Deformation in Bone by X-ray Diffraction Imaging Method

    Get PDF
    Knowledge of internal stress-strain in bone tissue is important for clinical diagnosis and remedies. The inorganic mineral phase of apatite crystals in bone composite, because of its crystalline nature, provides a reliable way of measurement through X-ray diffraction system. Use of a two-dimensional detector, imaging plate, is considered to expedite the process with much more information, hence, is widely applied in the study of organization, stress, strain, etc for crystalline substance. The distortion of Debye rings in the image obtained by imaging plate can be directly related to the deformation in lattice plane of the crystals. Since X-ray diffraction method involves measurement at nano-level, proper focus on the extraction of data and corresponding analysis is needed. In the current work, we considered weighted average value of intensity to locate radius vectors along azimuthal direction in the diffracted rings from the primary array of digital data in steps of pixels. The widely applied approaches for profile shift measurement - peak-shift and full width at half maximum (FWHM) of a peak, and shift of centre of gravity of profile – were compared with a new concept of segmental-shift (SS) proposed previously by the authors. We observed reliable and effective outcomes with higher precision in the consideration of SS while using imaging plate as a detector. Our approach in this work for intensity integration and radius vector positioning especially add precision in such applications

    Development of a portable assistive exoskeleton for human arm movements

    No full text
    Abstract Over the past two decades, the number of people with arm disabilities has dramatically increased. Many researchers have begun to concentrate on developing technologies to address this challenge. Exoskeleton is one of the most successful technologies out of these since it does not require medical staff to accompany the patients and can continually rehabilitate the patients until they regain the ability to move voluntarily. However, the majority of exoskeletons are anchored to the ground and individuals are unable to purchase one due to its high manufacturing costs. Furthermore, since this type of exoskeleton is anchored to the ground, patients must go to hospitals to get rehabilitation services. In this study, a portable assistive exoskeleton for human arm motions is designed to address this problem. This device can carry patients' arms to the desired position by adhering to a prescribed trajectory by medical specialists. The main parts of this exoskeleton are made of polylactic acid and produced using 3D printing technology. Therefore, the total manufacturing costs of the exoskeleton are not excessive and the weight of it is not high as well

    Gait analysis using gravitational acceleration measured by wearable sensors

    Get PDF
    A novel method for measuring human gait posture using wearable sensor units is proposed. The sensor units consist of a tri-axial acceleration sensor and three gyro sensors aligned on three axes. The acceleration and angular velocity during walking were measured with seven sensor units worn on the abdomen and the lower limb segments (both thighs, shanks and feet). The three dimensional positions of each joint are calculated from each segment length and joint angle. Joint angle can be estimated mechanically from the gravitational acceleration along the anterior axis of the segment. However, the acceleration data during walking includes three major components; translational acceleration, gravitational acceleration and external noise. Therefore, an optimization analysis was represented to separate only the gravitational acceleration from the acceleration data. Because the cyclic patterns of acceleration data can be found during constant walking, a FFT analysis was applied to obtain some characteristic frequencies in it. A pattern of gravitational acceleration was assumed using some parts of these characteristic frequencies. Every joint position was calculated from the pattern under the condition of physiological motion range of each joint. An optimized pattern of the gravitational acceleration was selected as a solution of an inverse problem. Gaits of three healthy volunteers were measured by walking for 20 seconds on a flat floor. As a result, the acceleration data of every segment was measured simultaneously. The characteristic three-dimensional walking could be shown by the expression using a stick figure model. In addition, the trajectories of the knee joint in the horizontal plane could be checked by visual imaging on a PC. Therefore, this method provides important quantitive information for gait diagnosis
    corecore