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ABSTRACT
The incidence of osteoporotic fractures was estimated as nine million worldwide in
2000, with particular occurrence at the proximity of joints rich in cancellous bone.
Although most of these fractures spontaneously heal, some fractures progressively
collapse during the early post-fracture period. Prediction of bone fragility during
progressive collapse following initial fracture is clinically important. However, the
mechanism of collapse, especially the gradual loss of the height in the cancellous
bone region, is not clearly proved. The strength of cancellous bone after yield stress
is difficult to predict since structural and mechanical strength cannot be determined a
priori. The purpose of this study was to identify whether the baseline structure and
volume of cancellous bone contributed to the change in cancellous bone strength
under cyclic loading. A total of fifteen cubic cancellous bone specimens were obtained
from two 2-year-old bovines and divided into three groups by collection regions:
femoral head, neck, and proximal metaphysis. Structural indices of each 5-mm cubic
specimen were determined using micro-computed tomography. Specimens were then
subjected to five cycles of uniaxial compressive loading at 0.05 mm/min with initial
20 N loading, 0.3 mm displacement, and then unloading to 0.2 mm with 0.1 mm
displacement for five successive cycles. Elastic modulus and yield stress of cancellous
bone decreased exponentially during five loading cycles. The decrease ratio of yield
stress from baseline to fifth cycle was strongly correlated with bone volume fraction
(BV/TV, r = 0.96, p< 0.01) and structural model index (SMI, r =−0.81, p< 0.01).
The decrease ratio of elastic modulus from baseline to fifth cycle was also correlated
with BV/TV (r = 0.80, p< 0.01) and SMI (r =−0.78, p< 0.01). These data indicate
that structural deterioration of cancellous bone is associated with bone strength after
yield stress. This study suggests that baseline cancellous bone structure estimated
from adjacent non-fractured bone contributes to the cancellous bone strength during
collapse.
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INTRODUCTION
Osteoporosis is a common disease which is characterized by low bone mass and deteriora-
tion of bone tissue, resulting in an increased risk of fracture, particularly at the proximity
of the joint rich in cancellous bone (Riggs & Melton 3rd, 1995). Among the estimated
nine million osteoporotic fractures worldwide in 2000, 1.6 million were in the hip, 1.7
million in the forearm, and 1.4 million were vertebral fractures (Johnell & Kanis, 2006).
The hip and spine fractures in osteoporosis patients often include those occurring because
of falls from a standing height and less due to progressive collapse. Progressive collapse
is characteristically found in deformities after compress fractures with continuous loss of
the height in the whole fracture bone area. For example, progressive vertebral collapse can
be defined in this way: the vertebral collapse fracture is found in deformities after initial
fracture, followed by continuous loss of vertebral body height. Within a femoral fracture,
the occult fracture of the femur and the subchondral insufficiency fracture (SIF) of the
femoral head are also manifested in the cancellous bone region with rapid progression
of the collapse, such as seen in rapidly progressive arthritis of SIF (Bangil et al., 1996;
Yamamoto, 2012). Severe collapse of these areas can lead to chronic pain, depression, an
inability to perform daily life activities, and in extreme cases can be life-threatening (Riggs
& Melton 3rd, 1995; Poole & Compston, 2006; Ioannidis et al., 2009; Adachi et al., 2010).
Thus, prevention of the collapse in rich area of cancellous bone, especially proximal femur
and spine fracture, is clinically critical.

Cancellous bone plays an important role as the primary load-carrying component
that absorbs energy (Fyhrie & Schaffler, 1994). Characteristic stress–strain (S–S) curves
indicate that the mechanical competence of cancellous bone depends mainly on the
trabeculae network and material properties of the tissue. The post-yield behavior of
cancellous bone has been well-documented in previous studies and linked to strain and
density (Keaveny et al., 1994a; Keaveny et al., 1994b; Keaveny, Wachtel & Kopperdahl,
1999). These studies also investigated failure patterns in specimens of cancellous bone
and showed similar S–S curves to those obtained. Fyhrie & Schaffler (1994) conducted
on compressive tests of cancellous cubic bone and concluded that S–S curves after linear
region were considered to have three phases which correspond with: (1) the initial
trabeculae yield; (2) the secondary trabeculae yield and buckle; and (3) the plateau region.
Mechanical properties in three phases decreased and finally plateaued, while the strain
increased and the height loss progressively collapsed in areas rich with cancellous bone
without specific trauma.

According to macroscopic experiments using compression tests, the stiffness of
cancellous bone is correlated with its apparent density (Keller, 1994;Morgan & Keaveny,
2001;Morgan, Bayraktar & Keaveny, 2003; Follet et al., 2004). In addition, mechanical
properties that contribute to bone strength are determined by bone geometry (size and
shape of trabecular bone) and microarchitecture using noninvasive three-dimensional
micro-computed tomography (micro-CT) evaluation (Kopperdahl & Keaveny, 1998;
Ulrich et al., 1999; Ahlborg et al., 2003; Todoh et al., 2004). However, some studies suggest
that detection of bone geometries and microarchitecture, as well as structural indices, is
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associated with fracture in the distal radius and tibia (Genant et al., 1996;Mackey et al.,
2007; Link & Lang, 2014). Therefore, the geometry and microarchitecture of cancellous
bone contributes to the bone structural strength and would likely enable estimation of
osteoporotic fracture risk.

However, the means by which the mechanical properties of cancellous bone were
decreasing after the elastic region, and which structural factors affected the decreased
mechanical properties, has not been well documented. This is because the non-linear
response of cancellous bone post-yielding is more difficult to interpret than the linear
response of the cortical diaphysis. In addition, the thin cortical shell covers 45% of
the mid-transverse section to as low as 15% at the endplates (Eswaran et al., 2006).
To advance our knowledge of the mechanism of progressive collapse, it is necessary
to understand functional adaptation of cancellous bone to post-yield stress tendency.
Moreover, identifying the relationship between the structural indices of cancellous bone
and decreased mechanical properties post-yield may contribute to understanding the
gradual decrease of the height in progressive collapse. Hence, the aim of this study was to
investigate how cancellous bovine bone specimens taken from different areas of the femur
change in elastic modulus and yield stress during cyclic compressions, and to examine the
relationships between structural indices and decreased strength after the elastic region.

METHODS
Specimen preparation
A total 15 specimens were extracted from two bovines (A and B); 8 specimens were
obtained from the right femur of bovine A and 7 specimens were obtained from the
left femur of bovine B as shown in Table 1. Specimens were grouped (n = 5/groups)
in accordance with their extraction regions: the proximal metaphysis, neck, and head
(Fig. 1). The femurs were first sliced along the coronal plane and then into 5-mm cubic
shapes using a diamond wheel saw (model 650; South Bay Technology, San Clemente,
CA, USA). All specimens containing cancellous bone were retrieved where one axis of the
specimen corresponded to the longitudinal axis and 2 mm away from the cortical bone
and epiphysis. Bone marrow was removed from the specimens using a pressure water jet,
brushes, and automatic ultrasound device (US-1; Samsung, Tokyo, Japan). Specimens
were stored in a container at−35 ◦C until experimentation. Preliminary experiments
demonstrated that the bone volume fraction (BV/TV) increased in direct proportion with
the proximity of the specimen from the femur metaphysis to the head. In accordance with
this finding, specimens were grouped into three parts according to BV/TV, differing by
approximately 10% between each part, as shown in Table 1.

Microstructure analysis using micro-CT
The micro-CT technique and image processing approach were based on current guide-
lines and a previous study (Bouxsein et al., 2010). All specimens were scanned using a
micro focus CT instrument (InspeXio SMX-90CT; Shimadzu, Kyoto, Japan) at a 22 µm
horizontal grid spacing and slice interval of 90 kV and tube current of 110 mA. Tissue
bone mineral density (tBMD) was calibrated from the gray scale linear value using an
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Table 1 Mechanical properties and structural indices are shown. These data are shown as mean and standard deviation.

Specimen Mechanical properties Structural indices tBMD
(g/cm3)

Area No Bovine Yield
stress
σY 1(MPa)

Elastic
modulus
E1(MPa)

BV/TV(%) Connectivity SMI DA Fractal
dimen-
sion

Tb.Th. (mm) Tb.Sp. (mm)

Mean S.D. Mean S.D.

1 14.2 435.5 20.6 182 1.66 0.79 2.45 0.24 0.07 1.19 0.45 732.9
2 A 22.3 504.0 24.4 111 1.19 0.80 2.49 0.28 0.09 0.99 0.35 774.3
3 15.6 460.3 14.2 238 2.78 0.73 2.47 0.17 0.04 0.83 0.27 692.2
4 18.2 314.0 22.6 175 1.47 0.77 2.44 0.27 0.08 1.00 0.38 768.3
5

B
13.6 426.9 24.3 162 1.38 0.71 2.57 0.23 0.06 0.85 0.32 735.3

Mean 16.8 428.1 21.2 173 1.70 0.76 2.48 0.24 0.07 0.97 0.35 740.6

Meta-
physis

S.D. 3.6 70.5 4.2 45 0.63 0.04 0.05 0.04 0.02 0.15 0.07 32.9
6 19.7 763.0 29.1 659 2.02 0.62 2.47 0.20 0.06 0.81 0.29 675.3
7 16.5 518.6 40.6 272 1.46 0.62 2.72 0.24 0.07 0.65 0.20 701.3
8

A
16.3 462.6 40.7 804 1.21 0.52 2.69 0.25 0.06 0.69 0.25 683.3

9 9.4 237.8 35.0 783 1.79 0.66 2.66 0.22 0.06 0.73 0.26 688.4
10 B 18.1 620.7 40.0 1,074 0.86 0.75 2.59 0.26 0.09 1.12 0.76 692.4

Mean 16.0 520.5 37.1 718 1.47 0.63 2.63 0.23 0.07 0.80 0.35 688.1

Neck

S.D. 3.9 195.0 5.1 292 0.46 0.08 0.10 0.02 0.01 0.19 0.23 9,8
11 30.1 871.8 47.6 10,736 −0.64 0.85 2.80 0.18 0.08 0.29 0.18 726.8
12 26.9 779.0 48.6 8,039 −2.31 0.85 2.82 0.20 0.08 0.31 0.19 722.8
13

A
30.4 1,022.7 48.9 874 −1.64 0.70 2.81 0.23 0.05 0.45 0.18 724.3

14 31.1 970.2 47.0 1,459 −0.88 0.74 2.85 0.23 0.06 0.41 0.16 716.0
15 B 31.4 990.6 51.9 9,656 −1.79 0.64 2.88 0.19 0.08 0.32 0.17 709.4

Mean 30.0 926.9 48.8 6,152 −1.45 0.75 2.83 0.21 0.07 0.35 0.18 719.9

Head

S.D. 1.8 100.0 1.9 4,657 0.68 0.09 0.03 0.02 0.01 0.07 0.01 7.1
Mean 20.9 625.2 35.7 2,348 0.57 0.72 2.65 0.22 0.07 0.71 0.29 716.2

All area S.D. 7.2 258.9 12.2 3,150 1.61 0.08 0.15 0.03 0.01 0.27 0.15 28.3
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Figure 1 Cubic specimens were obtained along the bovine femur bone axes from the (A) head, (B)
neck, and (C) metaphysis.

imaging reference micro-CT phantom. A review of the literature indicated that filtration
does not necessarily require software-based beam hardening corrections for imaging of
cancellous bone (Waarsing, Day & Weinans, 2004;Meganck et al., 2009). In preliminary
assessments, a cover of only 0.1 mm Cu as an X-ray filter could reduce the induced beam
hardening enough to calculate tBMD and structural indices. To assess the volumetric
density and microarchitecture of cancellous bone, Bone J software can be used to calculate
a number of structural indices (Doube et al., 2010). The structural indices determined in
this study included BV/TV, degree of anisotropy (DA), trabecular thickness (Tb.Th.),
trabecular space (Tb.Sp.), structure model index (SMI), and number of connections
(connectivity).

Cyclic compression test
Uniaxial compression tests were conducted on the specimens in the longitudinal direction
to measure the apparent elastic modulus and yield stress using a mechanical testing
machine (model 3365; Instron, Grove City, PA, USA) at room temperature. Loading
parameters were established during preliminary experiments using bone samples. Figure 2
shows that the S–S curves obtained in this experiment also had the three phases described
previously in the introduction (Fyhrie & Schaffler, 1994). A strain of 0.06 (0.3 mm
displacement) was chosen to ensure failure of the three specimens in the head groups, as
this exceeds the failure strain by an average 1.5 times.

Finally, the optimal experimental conditions for cycles of loading were identified as
follows: 0.3 mm displacement then unloading to 0.2 mm with 0.1 mm displacement
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Figure 2 Stress–strain curve of successful uniaxial compression.

Figure 3 Method and stress–strain curves of cyclic compression. (A) Total displacement of each cycle
increased with 0.1-mm displacement. (B) Stress–strain curves under cyclic compression; yield stress was
set to the maximum point, and elastic modulus were calculated from 50% to 70% of the maximum load in
each cycle.

for five successive cycles (Fig. 3A). The five compression cycles were set to auto control
regulation with preloading of 20 N and a displacement rate of 0.05 mm/min. The
apparent elastic modulus was calculated from 50% to 70% of maximum loading in each
cycle. Yield stress was defined as the inflection point that existed between the linear region
to the plateau or the stress decreasing region (Fig. 3B).
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Figure 4 (A) Elastic modulus and (B) yield stress of each cycle are expressed relative to those of the
first cycle.

Statistical analysis
Pearson’s correlation coefficient between the mechanical properties and structural indices
were calculated and considered to be significant at p< 0.01. JMP Pro software (Version
11.0.0; SAS Institute Inc., Cary, NC, USA) was used to perform statistical analyses.

RESULTS
Mechanical properties, structural indices and tBMD of the specimens are shown in
Table 1. BV/TV correlated negatively with Tb.Sp.Mean and positively with connectivity.
SMI identified plate, rod and concave shapes in the trabeculae of the metaphysis, neck and
head groups, respectively. There were no significant differences with respect to the mean
DA and Tb.Th between the groups. However, elastic modulus was significantly different
between the groups after the first cycle, with values of 428.1± 70.5 MPa in the metaphysis
group, 520.5± 195.0 MPa in the neck group, and 926.9± 100.0 MPa in the head group.
Yield stress at the first cycle was 16.8± 3.6 MPa in the metaphysis group, 16.0± 3.9 MPa
in the neck group, and 30.0± 1.8 MPa in the head group. Bone strength was considerably
reduced after the first yield stress, and then decreased more moderately with subsequent
cycles (Fig. 4).

The elastic modulus ratio between the fifth and first cycle (E5/E1) was 26.0 ± 13.4%
in the metaphysis group, 34.7 ± 9.7% in the neck group, and 50.9 ± 5.5% in the head
group. Moreover, the yield stress ratio between the fifth and first cycle (σY5/σY1) was
18.9 ± 7.3% in the metaphysis group, 49.7 ± 9.7% in the neck group, and 74.3 ± 7.1%
in the head group. Table 2 showed that BV/TV, connectivity, SMI, and Tb.Sp.Mean were
significantly correlated with mechanical properties (E1 and σY1), and with the decrease
ratio (E5/E1 and σY5/σY1), though the majority of parameters were poorly correlated. The
strongest correlations were found between SMI and σY 1 (r =−0.86) and E1 (r =−0.67).
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Table 2 Correlation coefficients between structural indices andmechanical properties.

DA BV/TV Connectivity SMI Tb.Thmean Tb.Sp mean

E1 −0.08 0.63* 0.45 −0.67* 0.29 −0.67*

σY 1 0.06 0.69* 0.34 −0.86* 0.37 −0.71*

E5/E1 −0.47 0.80* 0.38 −0.78* 0.37 −0.55
σY 5/σY 1 −0.43 0.96* 0.66* −0.81* 0.26 −0.79*

Notes.
*p< 0.01.

Figure 5 showed that BV/TV was strongly correlated with E5/E1 (r = 0.80) and σY5/σY1
(r = 0.96). SMI was negatively correlated with E5/E1 (r =−0.78) and σY5/σY1 (r =−0.81).
σY5/σY1 was also correlated with connectivity (r = 0.66) and Tb.Sp.Mean (r =−0.79).

DISCUSSION
The present study elucidated two important post yielding mechanical phenomena of
cancellous bone in order to understand the progressive collapse. Firstly, both elastic
modulus and yield stress initially decreased rapidly and then decreased more gradually in
line with the exponential approximation. In addition, both of the decrease ratios of elastic
modulus and yield stress were inversely proportional to BV/TV. Following the exposure of
cancellous bone to compressive loads high enough to initiate buckling of the trabeculae,
mechanical strength decreases and progressive collapse occurs much easier in groups with
low BV/TV. Thus, breakage of the trabeculae following load stress may impair the strength
of the cancellous bone. From this viewpoint, the collapse in osteoporosis patients might
progress rapidly as a consequence of the significant decrease of cancellous bone strength.
Secondly, the mechanical properties at the first cycle and the decrease ratio correlated
strongly with BV/TV and SMI, and weakly with connectivity and Tb.Sp.Mean. The novel
relationships between the decrease ratio of mechanical properties and structural indices
allowed estimations of the decrease in mechanical strength. Hence, these results indicated
that baseline cancellous bone structure could help to understand cancellous bone strength
during collapse. It has recently been shown that clinical CT can determine structural indices
with a resolution of 0.1 mm (Burghardt et al., 2007). This study suggests that baseline bone
structure estimated from the adjacent non-fractured bone side can contribute to the
cancellous bone strength during clinical collapse. This bone fragility of cancellous bone
during progressive collapse is only one part of the whole bone strength; however, medical
institutions could more correctly evaluate the permissible pressure of the fracture area and
more confidentially allow each osteoporosis patient to undertake the appropriate levels of
rehabilitation without progressive collapse.

This first experiment in terms of using cyclic compression testing helps to understand the
post-yield tendency of progressive collapse in areas rich with cancellous bone. Additionally,
our study used successive compression testingwhich increased strain in every cycle.Keaveny
et al. (1994b) aimed at determining how the modulus and strength decreased after being
subjected to yield stress with various initial loading strains. Figure 4 shows that the
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Figure 5 Correlations betweenmechanical properties and structural indices. These graphs showed (A)
E5/E1 and BV/TV (r = 0.80), (B) σY 5/σY 1 and BV/TV (r = 0.96), (C) E5/E1 and SMI (r = −0.78), and
(D) σY 5/σY 1 and SMI (r =−0.81).

approximate amount of decrease ratio in our study is similar in elastic modulus but
different in yield stress compared to their study. The reason for this may be because of
differences in the specimens preparations, experimental settings or in cycle numbers.

The bovine femurs were suitable for the purpose of this study because they had
vast differences in the microarchitecture, especially with respect to BV/TV. Our study
highlighted that the bovine femurs included the distal cancellous bone comprising the
metaphysis with a lower BV/TV of the whole femur, and the proximal end of femur
comprising the femoral head with a higher BV/TV. Compared with previous studies that
have also identified BV/TV as a strong predictor of bone strength, our study examines a
range of BV/TV four times wider than those in other studies using identical conditions
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(Goulet et al., 1994; Dux et al., 2010; Slyfield et al., 2012; Hernandez et al., 2014). Other
studies have also included a broader range of BV/TV, but under different preparations; for
example, after nephrectomy, ovariectomy or loading (Cory et al., 2010; Morgan, Bostrom
& Van der Meulen, 2015). Destructive mechanical tests would be more likely to result
in complicated S–S curves. Limiting the focus of structural indices would simplify
interpretations superior in accuracy to prevent errors occurring from other factors.
Therefore, the novelty of our study compared to other studies is broad range of BV/TV
with the same preparations.

For further improvements towardsmore accurate estimation of cancellous bone strength
in our in vitro model, other additional points were considered. First, the mechanical
properties of single trabeculae consisting of cancellous bone had to be considered. Yamada,
Tadano & Fukuda (2014) previously reported on single trabecular strength in bovine
femurs and the relationship between mechanical properties and nanostructure. To more
accurately predict bone strength, the structural strength of the whole cancellous bone was
applied in our work, with fine distinctions in material strength also applied using their
technique. Second, many studies (Tang & Vashishth, 2010; Lambers et al., 2013; Hernandez
et al., 2014; Lambers et al., 2014) reported that the damaged bone fraction affected elastic
modulus and yield stress. Use of these microscopic techniques to detect the damaged bone
fraction might anticipate the three phases in post-yielding. More specifically the second
and third phases, being the secondary trabecular yield and buckle and the plateau region,
respectively. In fact, our experiments attempted to understand the process of trabecular
buckling using micro-CT imaging, but obvious trabecular buckling was not observed from
the first yield to the start of plateau region. In future experiments, measuring the damaged
bone fractions might help to interpret the mechanism of decreased bone strength after the
first trabecular yielding in our experiments.

There were two limitations; the first limitation was that this study selected the direction
of compression only in the longitudinal direction. Previous studies have also used cubic
specimens from various parts and animals but have compared the elastic modulus
compressed in three directions (Vahey, Lewis & Vanderby Jr, 1987; Goulet et al., 1994;
Frich et al., 1997; Morgan, Bostrom & Van der Meulen, 2015). These studies showed that
the elastic modulus in the gravity direction was between 2 and 4 times greater than in the
other directions. Conversely, the strongest elastic modulus in our two bovine specimens
was not necessarily along the gravity direction as the specimens were relatively isotropic.
The uniaxial compression tests of the cubic specimens were conducted in each of three
directions and the maximum elastic modulus divided by minimum elastic modulus was
1.57 ± 0.47. This study also showed that the degree of anisotropy was not correlated
with the mechanical properties in cases where the specimens were limited to bovine
femurs. Therefore, this study ignored the effect of compression direction. For subsequent
investigations, we will consider how the mechanical properties of the cancellous bone are
influenced by the main trabecular direction of the human anatomical bone microstructure,
using the mean intercept length method (Odgaard et al., 1997; Perilli et al., 2008).

The second limitation was that the low number of specimens (n= 15) obtained from
only two young bovines with epiphysis. However, the latter limitation was also the scheme
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of our study to minimize the complicated errors in establishing the relationship between
structural indices and the decrease ratio of mechanical properties at first. The reason
was that healthy and young bovines tend to have little risk of secondary osteoporosis.
In future studies we will need to consider other complex factors such as BMD, collagen
quality and bone turnover. The experimental conditions must be achieved by a carefully
designed in vivo study and partly referring to our data of bovine specimens in this study.
Other studies have shown that the elastic modulus and yield stress in some patients
are not compromised by reduced BMD; for example, in severe osteoporosis, metastasis
(including after irradiation), necrosis, and secondary osteoporosis (Lavernia, Sierra &
Grieco, 1999; Fazzalari et al., 1998; Wu et al., 2008; Dux et al., 2010; Keaveny et al., 2014).
Hence, structural indices have a great potential to become disease-specific predictors. In
the future, structural indices might become the first predictors for the risk of progressive
collapse in rich area of cancellous bone after an initial fracture to enable better treatments,
external fixation, and more appropriate levels of activity and rehabilitation.

CONCLUSIONS
Elastic modulus and yield stress were significantly decreased at the first trabeculae yield,
and then decreased more gradually as the number of compression cycles was increased.
Subsequent decrease ratio in elastic modulus and yield stress was significantly correlated
with bone volume fractions and connectivity of cancellous bone. These results contribute
to one of the predictions of cancellous bone strength during progressive collapse, from
baseline cancellous bone structure estimated from the adjacent non-fractured side bone.
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