73 research outputs found

    Role of volcanic forcing on future global carbon cycle

    Get PDF
    Using a fully coupled global climate-carbon cycle model, we assess the potential role of volcanic eruptions on future projection of climate change and its associated carbon cycle feedback. The volcanic-like forcings are applied together with a business-as-usual IPCC-A2 carbon emissions scenario. We show that very large volcanic eruptions similar to Tambora lead to short-term substantial global cooling. However, over a long period, smaller eruptions similar to Pinatubo in amplitude, but set to occur frequently, would have a stronger impact on future climate change. In a scenario where the volcanic external forcings are prescribed with a five-year frequency, the induced cooling immediately lower the global temperature by more than one degree before it returns to the warming trend. Therefore, the climate change is approximately delayed by several decades, and by the end of the 21st century, the warming is still below two degrees when compared to the present day period. Our climate-carbon feedback analysis shows that future volcanic eruptions induce positive feedbacks (i.e., more carbon sink) on both the terrestrial and oceanic carbon cycle. The feedback signal on the ocean is consistently smaller than the terrestrial counterpart and the feedback strength is proportionally related to the frequency of the volcanic eruption events. The cooler climate reduces the terrestrial heterotrophic respiration in the northern high latitude and increases net primary production in the tropics, which contributes to more than 45 % increase in accumulated carbon uptake over land. The increased solubility of CO<sub>2</sub> gas in seawater associated with cooler SST is offset by a reduced CO<sub>2</sub> partial pressure gradient between the ocean and the atmosphere, which results in small changes in net ocean carbon uptake. Similarly, there is nearly no change in the seawater buffer capacity simulated between the different volcanic scenarios. Our study shows that even in the relatively extreme scenario where large volcanic eruptions occur every five-years period, the induced cooling leads to a reduction of 46 ppmv atmospheric CO<sub>2</sub> concentration as compared to the reference projection of 878 ppmv, at the end of the 21st century

    Projected pH reductions by 2100 might put deep North Atlantic biodiversity at risk

    Get PDF
    This study aims to evaluate the potential for impacts of ocean acidification on North Atlantic deep-sea ecosystems in response to IPCC AR5 Representative Concentration Pathways (RCPs). Deep-sea biota is likely highly vulnerable to changes in seawater chemistry and sensitive to moderate excursions in pH. Here we show, from seven fully coupled Earth system models, that for three out of four RCPs over 17% of the seafloor area below 500 m depth in the North Atlantic sector will experience pH reductions exceeding ?0.2 units by 2100. Increased stratification in response to climate change partially alleviates the impact of ocean acidification on deep benthic environments. We report on major pH reductions over the deep North Atlantic seafloor (depth >500 m) and at important deep-sea features, such as seamounts and canyons. By 2100, and under the high CO2 scenario RCP8.5, pH reductions exceeding ?0.2 (?0.3) units are projected in close to 23% (~15%) of North Atlantic deep-sea canyons and ~8% (3%) of seamounts – including seamounts proposed as sites of marine protected areas. The spatial pattern of impacts reflects the depth of the pH perturbation and does not scale linearly with atmospheric CO2 concentration. Impacts may cause negative changes of the same magnitude or exceeding the current target of 10% of preservation of marine biomes set by the convention on biological diversity, implying that ocean acidification may offset benefits from conservation/management strategies relying on the regulation of resource exploitation

    Oxygen and indicators of stress for marine life in multi-model global warming projections

    Get PDF
    Decadal-to-century scale trends for a range of marine environmental variables in the upper mesopelagic layer (UML, 100–600 m) are investigated using results from seven Earth System Models forced by a high greenhouse gas emission scenario. The models as a class represent the observation-based distribution of oxygen (O2) and carbon dioxide (CO2), albeit major mismatches between observation-based and simulated values remain for individual models. By year 2100 all models project an increase in SST between 2 °C and 3 °C, and a decrease in the pH and in the saturation state of water with respect to calcium carbonate minerals in the UML. A decrease in the total ocean inventory of dissolved oxygen by 2% to 4% is projected by the range of models. Projected O2 changes in the UML show a complex pattern with both increasing and decreasing trends reflecting the subtle balance of different competing factors such as circulation, production, remineralization, and temperature changes. Projected changes in the total volume of hypoxic and suboxic waters remain relatively small in all models. A widespread increase of CO2 in the UML is projected. The median of the CO2 distribution between 100 and 600m shifts from 0.1–0.2 mol m−3 in year 1990 to 0.2–0.4 mol m−3 in year 2100, primarily as a result of the invasion of anthropogenic carbon from the atmosphere. The co-occurrence of changes in a range of environmental variables indicates the need to further investigate their synergistic impacts on marine ecosystems and Earth System feedbacks

    Evaluating CMIP5 ocean biogeochemistry and Southern Ocean carbon uptake using atmospheric potential oxygen: Present-day performance and future projection

    Get PDF
    Observed seasonal cycles in atmospheric potential oxygen (APO ~ O2 + 1.1 CO2) were used to evaluate eight ocean biogeochemistry models from the Coupled Model Intercomparison Project (CMIP5). Model APO seasonal cycles were computed from the CMIP5 air-sea O2 and CO2 fluxes and compared to observations at three Southern Hemisphere monitoring sites. Four of the models captured either the observed APO seasonal amplitude or phasing relatively well, while the other four did not. Many models had an unrealistic seasonal phasing or amplitude of the CO2 flux, which in turn influenced APO. By 2100 under RCP8.5, the models projected little change in the O2 component of APO but large changes in the seasonality of the CO2 component associated with ocean acidification. The models with poorer performance on present-day APO tended to project larger net carbon uptake in the Southern Ocean, both today and in 2100

    An Assessment of CO2 Storage and Sea‐Air Fluxes for the Atlantic Ocean and Mediterranean Sea Between 1985 and 2018

    Get PDF
    As part of the second phase of the Regional Carbon Cycle Assessment and Processes project (RECCAP2), we present an assessment of the carbon cycle of the Atlantic Ocean, including the Mediterranean Sea, between 1985 and 2018 using global ocean biogeochemical models (GOBMs) and estimates based on surface ocean carbon dioxide (CO2) partial pressure (pCO2 products) and ocean interior dissolved inorganic carbon observations. Estimates of the basin-wide long-term mean net annual CO2 uptake based on GOBMs and pCO2 products are in reasonable agreement (−0.47 ± 0.15 PgC yr−1 and −0.36 ± 0.06 PgC yr−1, respectively), with the higher uptake in the GOBM-based estimates likely being a consequence of a deficit in the representation of natural outgassing of land derived carbon. In the GOBMs, the CO2 uptake increases with time at rates close to what one would expect from the atmospheric CO2 increase, but pCO2 products estimate a rate twice as fast. The largest disagreement in the CO2 flux between GOBMs and pCO2 products is found north of 50°N, coinciding with the largest disagreement in the seasonal cycle and interannual variability. The mean accumulation rate of anthropogenic CO2 (Cant) over 1994–2007 in the Atlantic Ocean is 0.52 ± 0.11 PgC yr−1 according to the GOBMs, 28% ± 20% lower than that derived from observations. Around 70% of this Cant is taken up from the atmosphere, while the remainder is imported from the Southern Ocean through lateral transport

    Changes in soil organic carbon storage predicted by Earth system models during the 21st century

    Get PDF
    Soil is currently thought to be a sink for carbon; however, the response of this sink to increasing levels of atmospheric carbon dioxide and climate change is uncertain. In this study, we analyzed soil organic carbon (SOC) changes from 11 Earth system models (ESMs) contributing simulations to the Coupled Model Intercomparison Project Phase 5 (CMIP5). We used a reduced complexity model based on temperature and moisture sensitivities to analyze the drivers of SOC change for the historical and high radiative forcing (RCP 8.5) scenarios between 1850 and 2100. ESM estimates of SOC changed over the 21st century (2090–2099 minus 1997–2006) ranging from a loss of 72 Pg C to a gain of 253 Pg C with a multi-model mean gain of 65 Pg C. Many ESMs simulated large changes in high-latitude SOC that ranged from losses of 37 Pg C to gains of 146 Pg C with a multi-model mean gain of 39 Pg C across tundra and boreal biomes. All ESMs showed cumulative increases in global NPP (11 to 59%) and decreases in SOC turnover times (15 to 28%) over the 21st century. Most of the model-to-model variation in SOC change was explained by initial SOC stocks combined with the relative changes in soil inputs and decomposition rates (R2 = 0.89, p < 0.01). Between models, increases in decomposition rate were well explained by a combination of initial decomposition rate, ESM-specific Q10-factors, and changes in soil temperature (R2 = 0.80, p < 0.01). All SOC changes depended on sustained increases in NPP with global change (primarily driven by increasing CO2). Many ESMs simulated large accumulations of SOC in high-latitude biomes that are not consistent with empirical studies. Most ESMs poorly represented permafrost dynamics and omitted potential constraints on SOC storage, such as priming effects, nutrient availability, mineral surface stabilization, and aggregate formation. Future models that represent these constraints are likely to estimate smaller increases in SOC storage over the 21st century

    Seasonal-to-decadal predictions with the ensemble Kalman filter and the Norwegian Earth System Model: a twin experiment

    Get PDF
    Here, we firstly demonstrate the potential of an advanced flow dependent data assimilation method for performing seasonal-to-decadal prediction and secondly, reassess the use of sea surface temperature (SST) for initialisation of these forecasts. We use the Norwegian Climate Prediction Model (NorCPM), which is based on the Norwegian Earth System Model (NorESM) and uses the deterministic ensemble Kalman filter to assimilate observations. NorESM is a fully coupled system based on the Community Earth System Model version 1, which includes an ocean, an atmosphere, a sea ice and a land model. A numerically efficient coarse resolution version of NorESM is used. We employ a twin experiment methodology to provide an upper estimate of predictability in our model framework (i.e. without considering model bias) of NorCPM that assimilates synthetic monthly SST data (EnKF-SST). The accuracy of EnKF-SST is compared to an unconstrained ensemble run (FREE) and ensemble predictions made with near perfect (i.e. microscopic SST perturbation) initial conditions (PERFECT). We perform 10 cycles, each consisting of a 10-yr assimilation phase, followed by a 10-yr prediction. The results indicate that EnKF-SST improves sea level, ice concentration, 2 m atmospheric temperature, precipitation and 3-D hydrography compared to FREE. Improvements for the hydrography are largest near the surface and are retained for longer periods at depth. Benefits in salinity are retained for longer periods compared to temperature. Near-surface improvements are largest in the tropics, while improvements at intermediate depths are found in regions of large-scale currents, regions of deep convection, and at the Mediterranean Sea outflow. However, the benefits are often small compared to PERFECT, in particular, at depth suggesting that more observations should be assimilated in addition to SST. The EnKF-SST system is also tested for standard ocean circulation indices and demonstrates decadal predictability for Atlantic overturning and sub-polar gyre circulations, and heat content in the Nordic Seas. The system beats persistence forecast and shows skill for heat content in the Nordic Seas that is close to PERFECT

    An update to the Surface Ocean CO2 Atlas (SOCAT version 2)

    Get PDF
    The Surface Ocean CO2 Atlas (SOCAT), an activity of the international marine carbon research community, provides access to synthesis and gridded fCO(2) (fugacity of carbon dioxide) products for the surface oceans. Version 2 of SOCAT is an update of the previous release (version 1) with more data (increased from 6.3 million to 10.1 million surface water fCO(2) values) and extended data coverage (from 1968-2007 to 1968-2011). The quality control criteria, while identical in both versions, have been applied more strictly in version 2 than in version 1. The SOCAT website (http://www.socat.info/) has links to quality control comments, metadata, individual data set files, and synthesis and gridded data products. Interactive online tools allow visitors to explore the richness of the data. Applications of SOCAT include process studies, quantification of the ocean carbon sink and its spatial, seasonal, year-to-year and longer-term variation, as well as initialisation or validation of ocean carbon models and coupled climate-carbon models.</p
    • 

    corecore