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Abstract Observed seasonal cycles in atmospheric potential oxygen (APO~O2 + 1.1 CO2) were used to
evaluate eight ocean biogeochemistry models from the Coupled Model Intercomparison Project (CMIP5).
Model APO seasonal cycles were computed from the CMIP5 air-sea O2 and CO2 fluxes and compared to
observations at three Southern Hemisphere monitoring sites. Four of the models captured either the
observed APO seasonal amplitude or phasing relatively well, while the other four did not. Many models had
an unrealistic seasonal phasing or amplitude of the CO2 flux, which in turn influenced APO. By 2100 under
RCP8.5, the models projected little change in the O2 component of APO but large changes in the seasonality
of the CO2 component associatedwith ocean acidification. Themodels with poorer performance on present-day
APO tended to project larger net carbon uptake in the Southern Ocean, both today and in 2100.

1. Introduction

The Southern Ocean is an important sink for atmospheric CO2 that accounts for more than 40% of oceanic
anthropogenic carbon uptake [Khatiwala et al., 2009; Sallée et al., 2012; Frölicher et al., 2015]. Some modeling
studies have suggested that the growth of the Southern Ocean carbon sink expected during the 1980s and
1990s may have been offset by increased wind-driven upwelling of deep waters naturally enriched in carbon,
which counteracts the air-sea pCO2 gradient caused by the fossil fuel-driven buildup of atmospheric CO2 [Le
Quéré et al., 2007; Lovenduski et al., 2008]. However, more recent papers have found that the expected
increasing strength of the Southern Ocean carbon sink resumed in the 2000s [Landschutzer et al., 2015;
Munro et al., 2015a]. In this paper, we use “sink” to refer to the net flux of carbon over the Southern Ocean,
including both the anthropogenic flux related to rising CO2 and the natural flux due to the circulation-driven
redistribution of carbon in the ocean.

Evaluation of trends in the Southern Ocean carbon sink based on ocean mixed layer observations of pCO2

have been complicated by data gaps and natural interannual and decadal variability, which hinder efforts
to detect long-term secular trends [Lovenduski et al., 2015; Munro et al., 2015b]. Observations of atmospheric
CO2 provide only a weak constraint on the air-sea flux of CO2 because of large confounding signals from the
land biosphere. Land exchanges can dominate the cycle even in the Southern Hemisphere due to long-range
transport of signals from the north [Nevison et al., 2008a]. The seasonal cycle in atmospheric CO2 is an espe-
cially challenging metric for assessing ocean processes, due to carbonate buffering, competing thermal and
biological influences, and the dominant influence of terrestrial photosynthesis and respiration [Heimann
et al., 1989; Cadule et al., 2010].

The seasonal cycle in atmospheric potential oxygen (APO~O2+ 1.1 CO2) provides information about the
carbon cycle that is not resolvable from atmospheric CO2 alone [Keeling et al., 1996; Stephens et al., 1998;
Manning and Keeling, 2006]. APO filters out terrestrial influences by assuming a compensating �1.1:1 O2:
CO2 stoichiometry between terrestrial photosynthesis and respiration, and thereby isolates oceanic biogeo-
chemical signals. A key advantage of APO is that O2 air-sea fluxes, in contrast to CO2 air-sea fluxes, are not
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damped by carbonate chemistry but otherwise respond to similar processes. APO varies seasonally mainly
due to air-sea exchanges of O2 associated with oceanic export production, net community production, deep
ventilation, and heating and cooling, all of which are key processes controlling air-sea CO2 exchanges.

Earth System Models (ESMs) are widely used tools for projecting the future evolution of ocean carbon uptake.
Output from a range of ESMs, forced with common historical and future scenarios, is available through the
Coupled Model Intercomparison Project phase 5 (CMIP5). Many recent studies have tested the skill of the
CMIP5 ocean models against hydrographic measurements and remotely sensed ocean color products [Anav
et al., 2013; Bopp et al., 2013; Henson et al., 2013]. One recent study evaluated six CMIP5 ocean models against
observed APO seasonal cycles [Nevison et al., 2015]. Here we build upon that study, focusing on the Southern
Ocean and examining APO seasonal cycles predicted by an expanded set of eight CMIP5 models for both the
present-day and the “business as usual” Representative Concentration Pathway (RCP8.5) scenario. We examine
the sensitivity of APO to the model air-sea CO2 flux, which exerts a substantial influence on our results and
explore correlated seasonal patterns in model O2 and CO2 fluxes. Finally, we relate performance on several
metrics of the APO cycle to the model Southern Ocean carbon sink, a variable of key interest in CMIP5.

2. Methods
2.1. CMIP5 Ocean Biogeochemistry Models

The eight CMIP5 models analyzed in this study include the ocean general circulation biogeochemical compo-
nents of the Geophysical Fluid Dynamics Laboratory (GFDL) Earth System Models (depth-based ESM2M and
density-based ESM2G vertical oceans) [Dunne et al., 2012, 2013]; the Institut Pierre-Simon Laplace Coupled
Model 5, version IPSL-CM5A-LR (IPSL) [Aumont and Bopp, 2006; Séférian et al., 2012]; the Community Earth
System Model (CESM) [Moore et al., 2002, 2004, 2013]; the Max Planck Institute for Meteorology (MPI-ESM)
Earth System Model, version MPI-ESM-LR [Ilyina et al., 2013]; the Norwegian Earth System Model-ME
(NorESM1) [Tjiputra et al., 2013]; the Hadley Global Environmental Model 2-Carbon Cycle (HadGEM2) [Palmer
and Totterdell, 2001]; and the Meteorological Research Institute Earth System Model 1 (MRI) [Yukimoto, 2011].

For each model, the following output fields were obtained from the CMIP5 historical simulation (middle
1800s–2005) and the RCP8.5 simulation (2006–2100): net air-sea O2 and CO2 fluxes, net surface heat flux (Q),
and sea surface salinity (SSS) and temperature (SST). These simulations used prescribed atmospheric CO2

values, guaranteeing that all the ocean models “saw” the same atmospheric concentration. The eight models
above encompass all available CMIP5 models that reported the fields needed to compute APO (not counting
themultiple spatial resolutions and large ensembles available for somemodels). The SSS, SST, andQ fields were
used to estimate air-sea N2 fluxes based on theQ(dS/dT)N2/Cp equation [Keeling et al., 1993;Manizza et al., 2012]
withmodifications from Jin et al. [2007]. In this equation,Q is heat flux, (dS/dT)N2 is the temperature derivative of
the solubility coefficient for N2, and Cp is the heat capacity of sea water.

2.2. Atmospheric Transport Model Simulations With GEOS-Chem

The ocean model O2, N2, and CO2 air-sea fluxes were translated into atmospheric potential oxygen (APO)
using forward simulations with the GEOS-Chem atmospheric transport model (ATM) [Suntharalingam et al.,
2004; Nassar et al., 2010]. GEOS-Chem was run at 2° × 2.5° horizontal resolution, with 47 sigma levels, driven
by MERRA (Modern Era Retrospective-Analysis) meteorological forcing. The GEOS-Chem simulations were
forced with ocean model air-sea fluxes from 1997 to 2004 for the historical case and 2095–2098 for the
RCP8.5 scenario.

For each CMIP5 model, separate passive tracer GEOS-Chem simulations were performed for each gas to cre-
ate separate time series of atmospheric O2, N2, and CO2. Anomalies of O2, N2, and CO2 were simulated as
equivalent deviations in trace gas mole fractions in micromole per mole of dry air and combined to calculate
a 3 year (excluding year 1 of the simulation) model APO time series in per meg units [Stephens et al., 1998;
Naegler et al., 2007; Nevison et al., 2008b, 2012]:

APOmodel ¼ 1
XO2

O2ð Þ � 1
XN2

N2ð Þ þ 1:1
XO2

CO2ð Þ (1)

where XO2 and XN2 are the dry air mole fractions of O2 and N2, treated here as constants (0.2094 and 0.7808,
respectively) and (O2), (N2), and (CO2) are the equivalent trace gas mole fraction deviations. Here N2 is needed

Geophysical Research Letters 10.1002/2015GL067584

NEVISON ET AL. CMIP5 APO AND SOUTHERN OCEAN CARBON FLUX 2078



because atmospheric O2 actually is measured as the O2/N2 ratio, as described below. Themean seasonal cycle
was estimated by fitting a third-order polynomial plus first two harmonics function to the daily GEOS-Chem
station-specific output. The harmonic components of the fit were used to construct the mean seasonal cycle
and to identify the day of the seasonal maximum.

An additional product, APOTaka, was computed with equation (2).

APOTaka ¼ 1
XO2

O2ð Þ � 1
XN2

N2ð Þ þ 1:1
XO2

CO2;Taka
� �

(2)

where all components are the same as those used in equation (1), except for the oceanic CO2 component.
Here (CO2,Taka) is the atmospheric time series resulting from a GEOS-Chem simulation forced with the
monthly mean climatological air-sea CO2 fluxes of Takahashi et al. [2009]. APOTaka was computed to evaluate
the sensitivity of APOmodel to the CMIP5 air-sea CO2 fluxes. In all APOmodel and APOTaka calculations, fossil CO2

emissions were assumed to make a negligible contribution to the seasonal cycle [Nevison et al., 2008b] and
thus were not included.

2.3. APO Data
2.3.1. Surface Monitoring Sites
Atmospheric O2 data, measured in terms of deviations in the O2/N2 ratio, were obtained from three surface
monitoring sites from the Scripps Institution of Oceanography (SIO) network. The sites included South Pole
(SPO, 89.98°S, 24.8°W), Palmer Station (PSA, 64.9°S, 64.0°W), and Cape Grim, Tasmania (CGO, 40.7°S, 144.7°E).
Data are available from the early to middle 1990s through the present, depending on the station [Manning
and Keeling, 2006].

Observed APO was calculated according to

APOobs ¼ δ O2=N2ð Þ þ 1:1
XO2

CO2-350ð Þ (3)

where δ(O2/N2) is the relative deviation in the O2/N2 ratio from a reference ratio in per meg units, XO2 = 0.2094
is the O2 mole fraction of dry air [Tohjima et al., 2005], CO2 is the dry air mole fraction of carbon dioxide in
parts per million (μmolmol�1), 350 is an arbitrary reference value, and 1.1 is an estimate of the�O2:CO2 ratio
of terrestrial respiration and photosynthesis [Severinghaus, 1995]. Mean seasonal cycles and day of seasonal
maxima for observed APO were estimated using the methodology described above in section 2.2.

3. Results and Discussion
3.1. Evaluation of CMIP5 Ocean Models Using APO

At all three surface sites (SPO, PSA, and CGO), the APOobs seasonal amplitude falls in the lower range of the
CMIP5 APOmodel results, with most models, except IPSL andMRI, tending to overestimate the observed ampli-
tude (Figures 1 and 2). Three models (CESM, ESM2M, and ESM2G) reproduce the observed phasing of the
seasonal cycle well, while the others are either too early by up to 1–2 months or too late by ~1/2month
(Figure 2). The evaluation of the models based on GEOS-Chem forward simulations is generally consistent
with the results of Nevison et al. [2015], who used a matrix method to translate air-sea fluxes from a subset
of the CMIP5 models featured here into APO seasonal cycles at surface sites. That study reported higher
confidence in the phasing of model APO results and somewhat lower confidence in the amplitude, due to
model-data mismatch errors associated with ATM uncertainty.

ATM uncertainty has long been an important issue when using surface level APO data to evaluate coupled
ocean model/ATM simulations [Battle et al., 2006; Naegler et al., 2007] and remains a concern in the current
analysis. Model surface-level APO is known to be particularly sensitive to trapping of strong local air-sea fluxes
at sites like PSA [Blaine, 2005]. Among the three SIO Southern Ocean stations, SPO is the farthest removed
from local sources and the least sensitive to ATM uncertainty [Blaine, 2005]. We therefore focus on SPO in
our evaluation below.

Among the eight CMIP5 models examined here, four fall within the uncertainty of either the observed APO
phase (CESM, ESM2M, and ESM2G) or amplitude (IPSL) at SPO while MPI-ESM, NorESM1, and HadGEM2, lie
well outside the uncertainty on both metrics. MRI lies well outside the observed APO phase uncertainty
and marginally outside the observed amplitude uncertainty (Figure 2). The evaluation based on surface-level
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results at SPO agrees well with GEOS-Chem column average results from 300 to 1000 mbar compared to
aircraft data over the Southern Ocean (Figure S1 in the supporting information) [Bent, 2014]. Column
averages eliminate a major source of ATM uncertainty associated with different vertical mixing schemes, in
which some ATMs trap fluxes more strongly near the surface than others [Stephens et al., 2007].

Figure 2. Annual mean CO2 uptake in the Southern Ocean for 1997–2004 integrated over 75°�35°S as simulated by eight
CMIP5 models plotted versus two metrics of the present-day APO (solid circles) and APOTaka (open circles) seasonal cycle
at South Pole: (a) day of seasonal maximum, (b) meanAPO amplitude. The grey shaded area denotes the estimated
uncertainty range in the APO observations. Two observation-based estimates of the carbon sink integrated over 75°–35°S
are shown as red squares [Takahashi et al., 2009] and red triangles [Landschutzer et al., 2015], with error bars estimated
assuming 50% uncertainty [Lenton et al., 2013] or from the reported annual mean standard deviation, respectively.

Figure 1. APO mean annual cycle for 1997–2004 simulated by GEOS-Chem forced with air-sea fluxes from eight CMIP5
models. Heavy black line shows the SIO mean annual APO cycle, (a, b) South Pole, (c, d) Palmer Station, and (e, f) Cape
Grim. Note the different Y axis scale for the middle panels. (Figures 1a, 1c, and 1e) GEOS-Chem forced by CMIP5 O2, N2, and
CO2 air-sea fluxes. (Figures 1b, 1d, and 1f) Same as left, except the CMIP5 CO2 fluxes are replaced with climatological air-sea
CO2 fluxes [Takahashi et al., 2009].
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Since many ocean models do not reliably
simulate the seasonal phase and amplitude
of air-sea CO2 fluxes [Jiang et al., 2014;
Majkut et al., 2014], we performed a sensitivity
test in which the CMIP5 CO2 fluxes were
replaced with climatological CO2 fluxes
[Takahashi et al., 2009]. The resulting
APOTaka seasonal cycles show a clearer inter-
model spread, with APOobs tending to fall
somewhere between IPSL and CESM and
the GFDL models (Figures 1b, 1d, and 1f
and S1, right). These results illustrate that
APOmodel is sensitive to the air-sea CO2 flux
component, as discussed further below.

3.2. Present and Future APO and the
Southern Ocean Carbon Sink

The four top-performing models (CESM,
ESM2M, ESM2G, and IPSL) with respect to
the APOmodel seasonal cycle at SPO predict

a present-day carbon sink of 0.75 ± 0.2 Pg C/yr in the Southern Ocean (defined from 35°S–75°S). In compar-
ison, the full eight CMIP5 model set predicts a larger uptake of 0.92 ± 0.3 Pg C/yr. The two models (MPI-ESM
and NorESM1) that predict the largest Southern Ocean carbon uptake (1.3 Pg C/yr) are the least consistent
with the observed seasonal cycle in APO (Figure 2). These results hold when plotting the CMIP5 carbon sink
against either the phase or amplitude of the APO seasonal cycle.

The present-day CMIP5 Southern Ocean carbon sink is a statistically significant predictor (R=0.85, p=0.008)
of the future Southern Ocean carbon sink in 2100 projected under RCP8.5 (Figure 3). Among CESM, ESM2M,
and ESM2G, the three top-performing models with respect to present-day APO seasonal phasing, the mean
future Southern Ocean sink circa 2100 under RCP8.5 is 2.0 ± 0.1 Pg C/yr. In contrast, the mean future sink pro-
jected by MPI-ESM, NorESM1, and HadGEM2 (models that perform less well with respect to present-day APO)
is 2.6 ± 0.2 Pg C/yr. However, IPSL, the top-performing model on APO amplitude, also projects a relatively
large future sink of 2.8 Pg C/yr.

While the CMIP5 models forecast large changes in the future Southern Ocean carbon sink, they project little
change in the O2 or N2 components of the APO seasonal cycle under RCP8.5 (Figure S2) The GFDL models
project the largest decrease in the O2 seasonal amplitude, but this corresponds to only a�8% change relative
to the present day. In all models, there is little change in the O2 cycle phasing. The lack of strong changes in
the O2 component may reflect future productivity increases in some regions of the Southern Ocean but
decreases in others [Steinacher et al., 2010; Bopp et al., 2013].

In contrast to the O2 component, many models project large changes in the phase and amplitude of the
oceanic CO2 flux component, which in turn has a substantial impact on APO. These models project a break-
down in carbonate buffering as the ocean acidifies, with an associated decrease in the timescale of air-sea
CO2 exchange [Doney et al., 2009; Hauck and Völker, 2015]. However, as discussed below, the models projecting
the strongest amplification of the oceanic CO2 seasonal cycle in the future (Figure S2) are those that exaggerate
the seasonal cycle in present-day surface ocean pCO2 relative to observations.

3.3. Seasonality in CO2 Fluxes and Relevance to APO and the Carbon Sink

As shown in Figures 1 and S1, the model APO seasonal cycle is sensitive to the CMIP5 air-sea CO2 fluxes. In
some models with small O2/N2 seasonal amplitudes (IPSL and MRI), the oceanic CO2 term is in phase with
O2/N2 and thus acts to increase APO (Figure S3). Conversely, in models with large O2/N2 seasonal amplitudes
(MPI-ESM, NorESM1, and HadGEM2), the oceanic CO2 seasonal cycle is also large and out of phase with O2/N2,
acting to decrease APO (Figure S3). The net effect leads to convergence in the APO amplitude among the
models, despite large differences in underlying CO2 and O2 components. As discussed below, the CMIP5

Figure 3. Annual mean CO2 uptake in the Southern Ocean integrated
over 75°S–35°S for 8 CMIP5models, comparing present-day 1997–2004
results and 2092–2099 projections under the RCP8.5 scenario.
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air-sea CO2 flux differences reflect issues with model biogeochemistry and ocean dynamics that are relevant
both to APOmodel and the strength of the model Southern Ocean carbon sink.

Four CMIP5 models (MPI-ESM, NorESM1, CESM, and HadGEM2) predict an inverse seasonal relationship
between air-sea CO2 and O2 fluxes in Southern Ocean (Figure 4). This relationship is most pronounced
in late spring and early summer and is particularly striking for MPI-ESM and NorESM1. Both those models
predict strong austral spring/early summer O2 outgassing that appears to be driven mainly by the
biology/ventilation component of the O2 flux, since the thermal component is relatively similar among all eight
CMIP5models (Figure S4). MPI-ESM and NorESM1 show a correspondingly strong biology-driven uptake of CO2

in spring and early summer, respectively. In contrast, four CMIP5models (ESM2G, ESM2M, IPSL, andMRI) predict
that the seasonal air-sea CO2 and O2 fluxes are in phase, with either neutral or net CO2 release to the atmo-
sphere in summer. In these models, the biological uptake is small enough that the summertime CO2 flux is
balanced, or even dominated by the thermal outgassing. For comparison, the observation-based estimate of
Takahashi et al. [2009] shows net CO2 uptake during summer in the Southern Ocean, although considerably
weaker than that predicted by MPI-ESM, NorESM1, HadGEM2, and CESM, especially south of 55°S (Figures 4
and S4). Effectively, none of the models captures the observed CO2 flux pattern, yet representatives from both
the net summer uptake and net summer outgassing model groups are among the top performers on APO. This
suggests that any of these models might give the right answer on APO at least in part for the wrong reasons.

Few previous CMIP5 intercomparison papers have discussed APO and air-sea O2 fluxes, but several have
examined air-sea CO2 fluxes and corresponding surface pCO2. A prominent finding from those studies is that
most models tend to predict a substantially stronger (up to a factor of 10) seasonal cycle in Southern Ocean
surface pCO2 than that inferred from observations [Anav et al., 2013; Jiang et al., 2014], a conclusion sup-
ported by our own analysis of air-sea CO2 fluxes (Figures 4a and S4). The large seasonal pCO2 swings have
been linked in some models to excessive seasonal amplitude in mixed layer depth (MLD) [Anav et al., 2013;
Jiang et al., 2014]. The large pCO2 seasonal amplitudes are associated with negative annual mean surface

Figure 4. (top row) Mean seasonal cycle in the air-sea (a) CO2 flux and (b) O2 flux, integrated over the 55–45°S latitude band
for 1997–2004. For both CO2 and O2, positive values reflect outgassing from ocean to atmosphere. The seasonal O2 fluxes
are plotted with a reverse Y axis to help visualize their relationship with the CO2 fluxes. (bottom row) Annual mean air-sea
(c) CO2 flux and (d) O2 flux from eight CMIP5 models, integrated over 10° latitude bands from 75°S–35°S. Dotted black lines
in Figures 4a–4c are observation-based climatological CO2 fluxes of Takahashi et al. [2009] or seasonal O2 flux anomalies of
Garcia and Keeling [2001] (which are zero in the annual mean and thus not shown in Figure 4d).
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ocean pCO2 biases relative to observations in the Southern Ocean, especially south of the Polar Front
(Figures 4c and S4), which imply an overly large CO2 sink. The annual mean bias is driven by summertime
values that are strongly negative relative to observed surface and atmospheric pCO2 and thus associated with
strong summertime carbon uptake.

More generally, the excessive model pCO2 seasonal amplitudes are linked to the models’ inability to capture
the appropriate balance between seasonality in pCO2 associated with SST-driven changes in solubility, and
DIC-driven seasonality associated with spring/summer biological uptake and fall/winter upwelling and ven-
tilation of DIC-enriched deep water. For CO2, these thermal and biology-driven cycles constitute large, oppos-
ing fluxes, for which models often have difficulty capturing the net balance. In contrast, thermal and
biological signals tend to be in phase and mutually reinforcing for O2 fluxes [Stephens et al., 1998].

Two of the CMIP5 models with the largest Southern Ocean carbon uptake, MPI-ESM and NorESM, show CO2

flux patterns that are consistent with a DIC-driven seasonality. The large springtime O2 fluxes and early APO
rise in MPI-ESM suggest excessive high-latitude biological production that ramps up too early in spring
(Figures 1 and 2). The NorESM1 temporal patterns indicate some of the same problems in spring/summer
biological production.

IPSL captures the observed APO amplitude reasonably well but predicts a too late spring rise, contrasting
with MPI-ESM and NorESM1 in both these respects (Figures 1 and 2). However, like MPI-ESM and NorESM1,
IPSL predicts a large present-day Southern Ocean carbon sink of >1 PgC/yr. IPSL is characterized by the
smallest O2 outgassing in spring and summer of all eight models (Figure 4) and also predicts the weakest
NPP, both globally and in the Southern Ocean, of the CMIP5 models evaluated in Nevison et al. [2015].
Compared to the Takahashi climatology, IPSL tends to underestimate carbon uptake in summer and overes-
timate it in fall and winter (Figures 4a and S4). These reversed seasonal patterns suggest that IPSL may have
unrealistically weak biological production in summer and correspondingly weak natural outgassing of CO2

from winter deep water ventilation.

We note finally that anthropogenic CO2 uptake is influenced by global circulation patterns in both the ocea-
nic models and in the atmospheric winds that drive them [Toggweiler et al., 2006; Frölicher et al., 2015]. Net
CO2 uptake in CMIP5 also may be influenced by model drift [Frölicher et al., 2015], which we did not control
in this study. In future work, a deeper understanding of how models differ in representing MLD and winter
mixing could help elucidate whether the emergent links between performance on APO and net CO2 uptake
are truly mechanistic or merely coincidental.

4. Conclusions

Seasonal cycles in APO at Southern Hemisphere sites were used to test the oceanmodel components of eight
Earth system models participating in CMIP5. The model/data comparisons revealed that four of the models
tested reproduce either the phase or amplitude of the observed cycles reasonably well while four lie outside
the range of observational uncertainty on both metrics. The APO seasonal cycle is sensitive to the air-sea CO2

flux component, which acts to homogenize APO across the CMIP5 models, making it appear more similar
than it would be based on the O2/N2 component alone.

The models that perform more poorly on the APO seasonal cycle tend to predict a larger carbon sink in the
Southern Ocean, defined from 35° to 75°S. However, different and complex factors may influence the rela-
tionship between APO and the net carbon sink for any individual model. In somemodels, most carbon uptake
occurs in fall and winter, with net summer CO2 outgassing that enhances APO seasonal amplitude. In other
models, most carbon uptake occurs in spring and summer, with net ingassing that reduces APO amplitude.
Overall, the APO-based analysis suggests that more conservative estimates of the present-day and future
Southern Ocean carbon sink may be more realistic.
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