119 research outputs found
Role of volcanic forcing on future global carbon cycle
Using a fully coupled global climate-carbon cycle model, we assess the potential role of volcanic eruptions on future projection of climate change and its associated carbon cycle feedback. The volcanic-like forcings are applied together with a business-as-usual IPCC-A2 carbon emissions scenario. We show that very large volcanic eruptions similar to Tambora lead to short-term substantial global cooling. However, over a long period, smaller eruptions similar to Pinatubo in amplitude, but set to occur frequently, would have a stronger impact on future climate change. In a scenario where the volcanic external forcings are prescribed with a five-year frequency, the induced cooling immediately lower the global temperature by more than one degree before it returns to the warming trend. Therefore, the climate change is approximately delayed by several decades, and by the end of the 21st century, the warming is still below two degrees when compared to the present day period. Our climate-carbon feedback analysis shows that future volcanic eruptions induce positive feedbacks (i.e., more carbon sink) on both the terrestrial and oceanic carbon cycle. The feedback signal on the ocean is consistently smaller than the terrestrial counterpart and the feedback strength is proportionally related to the frequency of the volcanic eruption events. The cooler climate reduces the terrestrial heterotrophic respiration in the northern high latitude and increases net primary production in the tropics, which contributes to more than 45 % increase in accumulated carbon uptake over land. The increased solubility of CO<sub>2</sub> gas in seawater associated with cooler SST is offset by a reduced CO<sub>2</sub> partial pressure gradient between the ocean and the atmosphere, which results in small changes in net ocean carbon uptake. Similarly, there is nearly no change in the seawater buffer capacity simulated between the different volcanic scenarios. Our study shows that even in the relatively extreme scenario where large volcanic eruptions occur every five-years period, the induced cooling leads to a reduction of 46 ppmv atmospheric CO<sub>2</sub> concentration as compared to the reference projection of 878 ppmv, at the end of the 21st century
The emergence of the Gulf Stream and interior western boundary as key regions to constrain the future North Atlantic carbon uptake
In recent years, the growing number of available climate models and future scenarios has led to emergent constraints becoming a popular tool to constrain uncertain future projections. However, when emergent constraints are applied over large areas, it is unclear (i) if the well-performing models simulate the correct dynamics within the considered area, (ii) which key dynamical features the emerging constraint is stemming from, and (iii) if the observational uncertainty is low enough to allow for a considerable reduction in the projection uncertainties.
We therefore propose to regionally optimize emergent relationships with the twofold goal to (a) identify key model dynamics associated with the emergent constraint and model inconsistencies around them and (b) provide key areas where a narrow observational uncertainty is crucial for constraining future projections.
Here, we consider two previously established emergent constraints of the future carbon uptake in the North Atlantic (Goris et al., 2018). For the regional optimization, we use a genetic algorithm and pre-define a suite of shapes and size ranges for the desired regions. Independent of pre-defined shape and size range, the genetic algorithm persistently identifies the Gulf Stream region centred around 30∘ N as optimal as well as the region associated with broad interior southward volume transport centred around 26∘ N. Close to and within our optimal regions, observational data of volume transport are available from the RAPID array with relative low observational uncertainty. Yet, our regionally optimized emergent constraints show that additional measures of specific biogeochemical variables along the array will fundamentally improve our estimates of the future carbon uptake in the North Atlantic. Moreover, our regionally optimized emergent constraints demonstrate that models that perform well for the upper-ocean volume transport and related key biogeochemical properties do not necessarily reproduce the interior-ocean volume transport well, leading to inconsistent gradients of key biogeochemical properties. This hampers the applicability of emergent constraints over large areas and highlights the need to additionally evaluate spatial model features.</p
Projected pH reductions by 2100 might put deep North Atlantic biodiversity at risk
This study aims to evaluate the potential for impacts of ocean acidification on North Atlantic deep-sea ecosystems in response to IPCC AR5 Representative Concentration Pathways (RCPs). Deep-sea biota is likely highly vulnerable to changes in seawater chemistry and sensitive to moderate excursions in pH. Here we show, from seven fully coupled Earth system models, that for three out of four RCPs over 17% of the seafloor area below 500 m depth in the North Atlantic sector will experience pH reductions exceeding ?0.2 units by 2100. Increased stratification in response to climate change partially alleviates the impact of ocean acidification on deep benthic environments. We report on major pH reductions over the deep North Atlantic seafloor (depth >500 m) and at important deep-sea features, such as seamounts and canyons. By 2100, and under the high CO2 scenario RCP8.5, pH reductions exceeding ?0.2 (?0.3) units are projected in close to 23% (~15%) of North Atlantic deep-sea canyons and ~8% (3%) of seamounts – including seamounts proposed as sites of marine protected areas. The spatial pattern of impacts reflects the depth of the pH perturbation and does not scale linearly with atmospheric CO2 concentration. Impacts may cause negative changes of the same magnitude or exceeding the current target of 10% of preservation of marine biomes set by the convention on biological diversity, implying that ocean acidification may offset benefits from conservation/management strategies relying on the regulation of resource exploitation
Southern Ocean bottom water characteristics in CMIP5 models
Southern Ocean deep water properties and formation processes in climate models are indicative of their capability to simulate future climate, heat and carbon uptake, and sea level rise. Southern Ocean temperature and density averaged over 1986–2005 from 15 CMIP5 (Coupled Model Intercomparison Project Phase 5) climate models are compared with an observed climatology, focusing on bottom water. Bottom properties are reasonably accurate for half the models. Ten models create dense water on the Antarctic shelf, but it mixes with lighter water and is not exported as bottom water as in reality. Instead, most models create deep water by open ocean deep convection, a process occurring rarely in reality. Models with extensive deep convection are those with strong seasonality in sea ice. Optimum bottom properties occur in models with deep convection in the Weddell and Ross Gyres. Bottom Water formation processes are poorly represented in ocean models and are a key challenge for improving climate predictions
Compatible fossil fuel CO2 emissions in the CMIP6 earth system models' historical and shared socioeconomic pathway experiments of the twenty-first century
We present the compatible CO2 emissions from fossil fuel (FF) burning and industry, calculated from the historical and Shared Socioeconomic Pathway (SSP) experiments of nine Earth system models (ESMs) participating in phase 6 of the Coupled Model Intercomparison Project (CMIP6). The multimodel mean FF emissions match the historical record well and are close to the data-based estimate of cumulative emissions (394 6 59 GtC vs 400 6 20 GtC, respectively). Only two models fall inside the observed uncertainty range; while two exceed the upper bound, five fall slightly below the lower bound, due primarily to the plateau in CO2 concentration in the 1940s. The ESMs' diagnosed FF emission rates are consistent with those generated by the integrated assessment models (IAMs) from which the SSPs' CO2 concentration pathways were constructed; the simpler IAMs' emissions lie within the ESMs' spread for seven of the eight SSP experiments, the other being only marginally lower, providing confidence in the relationship between the IAMs' FF emission rates and concentration pathways. The ESMs require fossil fuel emissions to reduce to zero and subsequently become negative in SSP1-1.9, SSP1-2.6, SSP4-3.4, and SSP5-3.4over. We also present the ocean and land carbon cycle responses of the ESMs in the historical and SSP scenarios. The models' ocean carbon cycle responses are in close agreement, but there is considerable spread in their land carbon cycle responses. Land-use and land-cover change emissions have a strong influence over the magnitude of diagnosed fossil fuel emissions, with the suggestion of an inverse relationship between the two. © 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses)
Oxygen and indicators of stress for marine life in multi-model global warming projections
Decadal-to-century scale trends for a range of marine environmental variables in the upper mesopelagic layer (UML, 100–600 m) are investigated using results from seven Earth System Models forced by a high greenhouse gas emission scenario. The models as a class represent the observation-based distribution of oxygen (O2) and carbon dioxide (CO2), albeit major mismatches between observation-based and simulated values remain for individual models. By year 2100 all models project an increase in SST between 2 °C and 3 °C, and a decrease in the pH and in the saturation state of water with respect to calcium carbonate minerals in the UML. A decrease in the total ocean inventory of dissolved oxygen by 2% to 4% is projected by the range of models. Projected O2 changes in the UML show a complex pattern with both increasing and decreasing trends reflecting the subtle balance of different competing factors such as circulation, production, remineralization, and temperature changes. Projected changes in the total volume of hypoxic and suboxic waters remain relatively small in all models. A widespread increase of CO2 in the UML is projected. The median of the CO2 distribution between 100 and 600m shifts from 0.1–0.2 mol m−3 in year 1990 to 0.2–0.4 mol m−3 in year 2100, primarily as a result of the invasion of anthropogenic carbon from the atmosphere. The co-occurrence of changes in a range of environmental variables indicates the need to further investigate their synergistic impacts on marine ecosystems and Earth System feedbacks
Evaluating CMIP5 ocean biogeochemistry and Southern Ocean carbon uptake using atmospheric potential oxygen: Present-day performance and future projection
Observed seasonal cycles in atmospheric potential oxygen (APO ~ O2 + 1.1 CO2) were used to evaluate eight ocean biogeochemistry models from the Coupled Model Intercomparison Project (CMIP5). Model APO seasonal cycles were computed from the CMIP5 air-sea O2 and CO2 fluxes and compared to observations at three Southern Hemisphere monitoring sites. Four of the models captured either the observed APO seasonal amplitude or phasing relatively well, while the other four did not. Many models had an unrealistic seasonal phasing or amplitude of the CO2 flux, which in turn influenced APO. By 2100 under RCP8.5, the models projected little change in the O2 component of APO but large changes in the seasonality of the CO2 component associated with ocean acidification. The models with poorer performance on present-day APO tended to project larger net carbon uptake in the Southern Ocean, both today and in 2100
Recommended from our members
Sources of uncertainty in modeled land carbon storage within and across three MIPs: Diagnosis with three new techniques
This is the final version. Available from the American Meteorological Society via the DOI in this recordTerrestrial carbon cycle models have incorporated increasingly more processes as a means to achieve more-realistic representations of ecosystem carbon cycling. Despite this, there are large across-model variations in the simulation and projection of carbon cycling. Several model intercomparison projects (MIPs), for example, the fifth phase of the Coupled Model Intercomparison Project (CMIP5) (historical simulations), Trends in Net Land-Atmosphere Carbon Exchange (TRENDY), and Multiscale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP), have sought to understand intermodel differences. In this study, the authors developed a suite of new techniques to conduct post-MIP analysis to gain insights into uncertainty sources across 25 models in the three MIPs. First, terrestrial carbon storage dynamics were characterized by a three-dimensional (3D) model output space with coordinates of carbon residence time, net primary productivity (NPP), and carbon storage potential. The latter represents the potential of an ecosystem to lose or gain carbon. This space can be used to measure how and why model output differs. Models with a nitrogen cycle generally exhibit lower annual NPP in comparison with other models, and mostly negative carbon storage potential. Second, a transient traceability framework was used to decompose any given carbon cycle model into traceable components and identify the sources of model differences. The carbon residence time (or NPP) was traced to baseline carbon residence time (or baseline NPP related to the maximum carbon input), environmental scalars, and climate forcing. Third, by applying a variance decomposition method, the authors show that the intermodel differences in carbon storage can be mainly attributed to the baseline carbon residence time and baseline NPP (>90% in the three MIPs). The three techniques developed in this study offer a novel approach to gain more insight from existing MIPs and can point out directions for future MIPs. Since this study is conducted at the global scale for an overview on intermodel differences, future studies should focus more on regional analysis to identify the sources of uncertainties and improve models at the specified mechanism level.This paper is financially supported by the Research and Development Special Fund for Public Welfare Industry of the Ministry of Water Research in China (201501028). JBF and CRS were supported in part by NASA’s Carbon Cycle Science program. JBF was also supported in part by NASA’s Terrestrial Ecology and Carbon Monitoring System programs. JT acknowledges RCN funded project EVA (229771) and BCCR-BIGCHANGE
- …