257 research outputs found

    Non Newtonian Particle Transport Model For Haemorheology

    Get PDF

    Amphibian Conservation. Global evidence for the effects of interventions

    Get PDF

    Beware the painful nerve palsy; neurostenalgia, a diagnosis not to be missed

    Get PDF
    We present a case of painful radial nerve palsy following application of a humeral lengthening frame. At re-operation, the radial nerve was found to be compressed against a distal pin. This was re-sited providing immediate pain relief and a gradual resolution of the radial nerve palsy. Pain in association with a nerve palsy should alert the clinician to the possibility of nerve compression that may benefit from urgent decompression

    Why it takes an 'ontological shock' to prompt increases in small firm resilience : sensemaking, emotions and flood risk

    Get PDF
    This article uses a sensemaking approach to understand small firms’ responses to the threat of external shocks. By analysing semi-structured interviews with owners of flooded small firms, we investigate how owners process flood experiences and explore why such experiences do not consistently lead to the resilient adaptation of premises. We, conclude that some of the explanation for low levels of adaptation relates to a desire to defend existing sensemaking structures and associated identities. Sensemaking structures are only revised if these structures are not critical to business identity, or if a flood constitutes an ‘ontological shock’ and renders untenable existing assumptions regarding long-term business continuity. This article has implications for adaptation to the growing risk of flooding, climate change and external shocks. Future research analysing external shocks would benefit from using a sensemaking approach and survey studies should include measurements of ‘ontological’ impact as well as material and financial damage. In addition, those designing information campaigns should take account of small firms’ resistance to information that threatens their existing sensemaking structures and social identities

    Targeted, High-Resolution RNA Sequencing of Non-coding Genomic Regions Associated With Neuropsychiatric Functions

    Get PDF
    The human brain is one of the last frontiers of biomedical research. Genome-wide association studies (GWAS) have succeeded in identifying thousands of haplotype blocks associated with a range of neuropsychiatric traits, including disorders such as schizophrenia, Alzheimer’s and Parkinson’s disease. However, the majority of single nucleotide polymorphisms (SNPs) that mark these haplotype blocks fall within non-coding regions of the genome, hindering their functional validation. While some of these GWAS loci may contain cis-acting regulatory DNA elements such as enhancers, we hypothesized that many are also transcribed into non-coding RNAs that are missing from publicly available transcriptome annotations. Here, we use targeted RNA capture (‘RNA CaptureSeq’) in combination with nanopore long-read cDNA sequencing to transcriptionally profile 1,023 haplotype blocks across the genome containing non-coding GWAS SNPs associated with neuropsychiatric traits, using post-mortem human brain tissue from three neurologically healthy donors. We find that the majority (62%) of targeted haplotype blocks, including 13% of intergenic blocks, are transcribed into novel, multi-exonic RNAs, most of which are not yet recorded in GENCODE annotations. We validated our findings with short-read RNA-seq, providing orthogonal confirmation of novel splice junctions and enabling a quantitative assessment of the long-read assemblies. Many novel transcripts are supported by independent evidence of transcription including cap analysis of gene expression (CAGE) data and epigenetic marks, and some show signs of potential functional roles. We present these transcriptomes as a preliminary atlas of non-coding transcription in human brain that can be used to connect neurological phenotypes with gene expression

    The Risk of Sympathetic Ophthalmia Associated with Open-Globe Injury Management Strategies:A Meta-analysis

    Get PDF
    Topic: Sympathetic ophthalmia (SO) is a sight-threatening granulomatous panuveitis caused by a sensitizing event. Primary enucleation or primary evisceration, versus primary repair, as a risk management strategy after open-globe injury (OGI) remains controversial.Clinical Relevance: This systematic review was conducted to report the incidence of SO after primary repair compared with that of after primary enucleation or primary evisceration. This enabled the reporting of an estimated number needed to treat.Methods: Five journal databases were searched. This review was registered with International Prospective Register of Systematic Reviews (identifier, CRD42021262616). Searches were carried out on June 29, 2021, and were updated on December 10, 2022. Prospective or retrospective studies that reported outcomes (including SO or lack of SO) in a patient population who underwent either primary repair and primary enucleation or primary evisceration were included. A systematic review and meta-analysis were carried out in accordance with Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines. Random effects modelling was used to estimate pooled SO rates and absolute risk reduction (ARR).Results: Eight studies reporting SO as an outcome were included in total. The included studies contained 7500 patients and 7635 OGIs. In total, 7620 OGIs met the criteria for inclusion in this analysis; SO developed in 21 patients with OGI. When all included studies were pooled, the estimated SO rate was 0.12% (95% confidence interval [CI], 0.00%–0.25%) after OGI. Of 779 patients who underwent primary enucleation or primary evisceration, no SO cases were reported, resulting in a pooled SO estimate of 0.05% (95% CI, 0.00%–0.21%). For primary repair, the pooled estimate of SO rate was 0.15% (95% CI, 0.00%–0.33%). The ARR using a random effects model was −0.0010 (in favour of eye removal; 95% CI, −0.0031 [in favor of eye removal] to 0.0011 [in favor of primary repair]). Grading of Recommendations, Assessment, Development, and Evaluations analysis highlighted a low certainty of evidence because the included studies were observational, and a risk of bias resulted from missing data.Discussion: Based on the available data, no evidence exists that primary enucleation or primary evisceration reduce the risk of secondary SO.Financial Disclosure(s): Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article

    Ground Water Chemistry Changes before Major Earthquakes and Possible Effects on Animals

    Get PDF
    Prior to major earthquakes many changes in the environment have been documented. Though often subtle and fleeting, these changes are noticeable at the land surface, in water, in the air, and in the ionosphere. Key to understanding these diverse pre-earthquake phenomena has been the discovery that, when tectonic stresses build up in the Earth’s crust, highly mobile electronic charge carriers are activated. These charge carriers are defect electrons on the oxygen anion sublattice of silicate minerals, known as positive holes, chemically equivalent to O− in a matrix of O2−. They are remarkable inasmuch as they can flow out of the stressed rock volume and spread into the surrounding unstressed rocks. Travelling fast and far the positive holes cause a range of follow-on reactions when they arrive at the Earth’s surface, where they cause air ionization, injecting massive amounts of primarily positive air ions into the lower atmosphere. When they arrive at the rock-water interface, they act as ‱O radicals, oxidizing water to hydrogen peroxide. Other reactions at the rock-water interface include the oxidation or partial oxidation of dissolved organic compounds, leading to changes of their fluorescence spectra. Some compounds thus formed may be irritants or toxins to certain species of animals. Common toads, Bufo bufo, were observed to exhibit a highly unusual behavior prior to a M6.3 earthquake that hit L’Aquila, Italy, on April 06, 2009: a few days before the seismic event the toads suddenly disappeared from their breeding site in a small lake about 75 km from the epicenter and did not return until after the aftershock series. In this paper we discuss potential changes in groundwater chemistry prior to seismic events and their possible effects on animals

    Saccadic Eye Movement Abnormalities in Children with Epilepsy

    Get PDF
    Childhood onset epilepsy is associated with disrupted developmental integration of sensorimotor and cognitive functions that contribute to persistent neurobehavioural comorbidities. The role of epilepsy and its treatment on the development of functional integration of motor and cognitive domains is unclear. Oculomotor tasks can probe neurophysiological and neurocognitive mechanisms vulnerable to developmental disruptions by epilepsy-related factors. The study involved 26 patients and 48 typically developing children aged 8–18 years old who performed a prosaccade and an antisaccade task. Analyses compared medicated chronic epilepsy patients and unmedicated controlled epilepsy patients to healthy control children on saccade latency, accuracy and dynamics, errors and correction rate, and express saccades. Patients with medicated chronic epilepsy had impaired and more variable processing speed, reduced accuracy, increased peak velocity and a greater number of inhibitory errors, younger unmedicated patients also showed deficits in error monitoring. Deficits were related to reported behavioural problems in patients. Epilepsy factors were significant predictors of oculomotor functions. An earlier age at onset predicted reduced latency of prosaccades and increased express saccades, and the typical relationship between express saccades and inhibitory errors was absent in chronic patients, indicating a persistent reduction in tonic cortical inhibition and aberrant cortical connectivity. In contrast, onset in later childhood predicted altered antisaccade dynamics indicating disrupted neurotransmission in frontoparietal and oculomotor networks with greater demand on inhibitory control. The observed saccadic abnormalities are consistent with a dysmaturation of subcortical-cortical functional connectivity and aberrant neurotransmission. Eye movements could be used to monitor the impact of epilepsy on neurocognitive development and help assess the risk for poor neurobehavioural outcomes

    Mouse models of frontotemporal dementia: a comparison of phenotypes with clinical symptomatology

    Get PDF
    Frontotemporal dementia (FTD) is the second most common cause of young onset dementia. It is increasingly recognized that there is a clinical continuum between FTD and amyotrophic lateral sclerosis (ALS). At a clinical, pathological and genetic level there is much heterogeneity in FTD, meaning that our understanding of this condition, pathophysiology and development of treatments has been limited. A number of mouse models focusing predominantly on recapitulating neuropathological and molecular changes of disease have been developed, with most transgenic lines expressing a single specific protein or genetic mutation. Together with the species-typical presentation of functional deficits, this makes the direct translation of results from these models to humans difficult. However, understanding the phenotypical presentations in mice and how they relate to clinical symptomology in humans is essential for advancing translation. Here we review current mouse models in FTD and compare their phenotype to the clinical presentation in patients

    The SAURON project - III. Integral-field absorption-line kinematics of 48 elliptical and lenticular galaxies

    Get PDF
    We present the stellar kinematics of 48 representative elliptical and lenticular galaxies obtained with our custom-built integral-field spectrograph SAURON operating on the William Herschel Telescope. The data were homogeneously processed through a dedicated reduction and analysis pipeline. All resulting SAURON datacubes were spatially binned to a constant minimum signal-to-noise. We have measured the stellar kinematics with an optimized (penalized pixel-fitting) routine which fits the spectra in pixel space, via the use of optimal templates, and prevents the presence of emission lines to affect the measurements. We have thus generated maps of the mean stellar velocity, the velocity dispersion, and the Gauss-Hermite moments h3 and h4 of the line-of-sight velocity distributions. The maps extend to approximately one effective radius. Many objects display kinematic twists, kinematically decoupled components, central stellar disks, and other peculiarities, the nature of which will be discussed in future papers of this series.Comment: 23 pages, 18 figures. Accepted for publication in MNRAS. Version with full resolution images available at http://www.strw.leidenuniv.nl/sauron/papers/emsellem2004_sauron3.pd
    • 

    corecore