
Accepted Manuscript

Title: Mouse models of frontotemporal dementia: A
comparison of phenotypes with clinical symptomatology

Author: <ce:author id="aut0005"
author-id="S0149763416305644-
003a45a7c5f51bcb36c8088b5342b9e5"> Rebekah M
Ahmed<ce:author id="aut0010"
author-id="S0149763416305644-
5a7955b9d628f35d443039e49e811e7c"> Muireann
Irish<ce:author id="aut0015"
author-id="S0149763416305644-
855311c7fd358e9a7cce0940145b9f12"> Janet van
Eersel<ce:author id="aut0020"
author-id="S0149763416305644-
d803735a0c070a2e007fafe45e4f3d59"> Arne Ittner<ce:author
id="aut0025" author-id="S0149763416305644-
4667ee1e31801a319e6402be989abd27"> Yazi D
Ke<ce:author id="aut0030" author-id="S0149763416305644-
609f5585df313c2182ab6084eb2bef1b"> Alexander
Volkerling<ce:author id="aut0035"
author-id="S0149763416305644-
b05386e89191cb931c5f30dc54390d7f"> Julia van der
Hoven<ce:author id="aut0040"
author-id="S0149763416305644-
51744f649da1ed60e7af08d27886d003"> Kimi
Tanaka<ce:author id="aut0045"
author-id="S0149763416305644-
0bc5aeff10094708c6fcf17baa82df4b"> Tim Karl<ce:author
id="aut0050" author-id="S0149763416305644-
b8bc96281a89e884153629659ecda1c7"> Michael
Kassiou<ce:author id="aut0055"
author-id="S0149763416305644-
b74ba9d6fefbc1bb7800ef69e2535970"> Jillian J
Kril<ce:author id="aut0060"
author-id="S0149763416305644-
4c9a88b912d1529167804e24cbb36d99"> Olivier
Piguet<ce:author id="aut0065"
author-id="S0149763416305644-
8c90dc3e2b3c7746ce95e5fd484525e2"> Jürgen
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Highlights 
 

 Frontotemporal dementia is the second most common form of young 
onset dementia. 

 There is much clinical, pathological and genetic heterogeneity within FTD. 
 Mouse models focusing predominantly on recapitulating neuropathological 

and molecular changes of disease have been developed, with most transgenic 

lines expressing a single specific protein or genetic mutation.  

 Together with the species-typical presentation of functional deficits, this 
makes generalized conclusions drawn from these models that are directly 
translatable to humans difficult. 

 Understanding the phenotypical presentations in mice and how they may 
relate to clinical symptomology in humans is essential for advancing 
translation in FTD. 
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Abstract 

Frontotemporal dementia (FTD) is the second most common cause of young onset dementia. 

It is increasingly recognized that there is a clinical continuum between FTD and amyotrophic 

lateral sclerosis (ALS). At a clinical, pathological and genetic level there is much 

heterogeneity in FTD, meaning that our understanding of this condition, pathophysiology and 

development of treatments has been limited. A number of mouse models focusing 

predominantly on recapitulating neuropathological and molecular changes of disease have 

been developed, with most transgenic lines expressing a single specific protein or genetic 

mutation. Together with the species-typical presentation of functional deficits, this makes the 

direct translation of results from these models to humans difficult. However, understanding 

the phenotypical presentations in mice and how they relate to clinical symptomology in 

humans is essential for advancing translation. Here we review current mouse models in FTD 

and compare their phenotype to the clinical presentation in patients. 

 

Introduction 

The term frontotemporal dementia (FTD) refers to a group of neurodegenerative disorders 

characterized by atrophy of the frontal and anterior temporal lobes of the brain. Prevalence 

studies suggest that FTD is the second most common cause of young onset dementia 

(Ratnavalli et al., 2002; Rosso et al., 2003). Two main clinical syndromes of FTD exist, based 

on the predominant clinical features at presentation: behavioural variant FTD (bvFTD), where 

there is deterioration in social function and personality; and primary progressive aphasia 

(PPA), with an insidious decline in language skills. PPA is further subdivided based on the 

nature of language breakdown into semantic variant primary progressive aphasia (sv-PPA), 

and non-fluent or agrammatic aphasia (progressive non-fluent aphasia: PNFA) (Gorno-

Tempini et al., 2011; Hodges and Patterson, 2007). FTD overlaps with ALS at a clinical, 

genetic and pathological level (Mitsuyama and Inoue, 2009), a position confirmed with the 

discovery of the C9ORF72 repeat expansion in FTD, FTD-ALS and ALS cases (Hodges, 

2012).   
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Each of the FTD syndromes presents with distinct clinical symptoms, neuroimaging, and 

pathological profiles (Table 1). Considerable overlap and heterogeneity exist within and 

between the syndromes, with limited correlations between clinical phenotype, underlying 

pathology and genotype. Given this complexity, the development of animal models of FTD 

has proven difficult. Currently available mouse models focus on the genetic causes and 

pathological changes and these only imperfectly correlate with clinical phenotypes. Here, we 

review current transgenic mouse models and compare their phenotypes to clinical features 

and functional deficits in FTD, which may guide the development of disease-modifying 

therapies. 

 

Pathology of FTD 

Both sporadic and autosomal dominant FTD are associated with a range of underlying 

pathologies, classified according to the protein predominantly accumulating in patients‟ 

brains. These proteins include the microtubule-associated protein tau, with different tau 

isoforms being affected in FTD subtypes such as 4-repeat tau (progressive supranuclear palsy 

(PSP), corticobasal degeneration (CBD) or globular glial tauopathy (GGT) that is 

characterized neuropathologically by widespread globular oligodendroglial and astrocytic tau 

inclusions (Ahmed et al., 2013), 3-repeat tau (Pick‟s disease), and mixed 3- and 4-repeat tau 

forms;TAR-DNA binding protein (TDP)-43 (type A to D; for details see (Mackenzie et al., 

2011)); and fused in sarcoma (FUS). In bvFTD, any of these pathological variants can be 

found, with tau or TDP-43 positive cases found at similar frequencies (Josephs et al., 2011; 

Seelaar et al., 2011). In sv-PPA the predominant pathology is TDP type C (Josephs et al., 

2011; Rohrer et al., 2010). The pathology of the other language variants is more variable and 

includes tauopathies, and TDP-43 proteinopathies. The co-occurrence of FTD and ALS is 

strongly suggestive of an underlying TDP-43 pathology (typically type B) (Seelaar et al., 

2011). Recent research has suggested that FTD and ALS may potentially result from a 

contiguous (almost „prion-like‟) spread (Braak et al., 2013; Ludolph and Brettschneider, 

2015; Tan et al., 2015). This occurs in a recognised centrifugal pattern with 4 stages of spread 
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in ALS beginning in the motor neocortex, progressing to the spinal cord and brainstem, with 

involvement of fronto-parietal regions and finally the temporal lobes (Brettschneider et al., 

2013). Such a pattern of spread may explain the development of cognitive symptoms in ALS 

and the spectrum of ALS and FTD. In behavioural variant FTD (bvFTD) pathological spread 

has been suggested to develop with a fronto-occipital gradient involving initially the frontal 

regions, and then pre-motor, primary motor, parietal and occipital cortex (Brettschneider et 

al., 2014). 

 

Genetic causes of FTD 

About 25-33% of FTD patients have a family history with an autosomal dominant pattern of 

inheritance (Rohrer et al., 2009; Rohrer and Warren, 2011; Rohrer et al., 2015a; Rohrer et al., 

2015b), most commonly associated with bvFTD (Seelaar et al., 2008). The three most 

common genes involved in FTD are C9ORF72, microtubule-associated protein tau (MAPT) 

and progranulin (GRN). Mutations in other, much less frequent, gene loci include VCP, 

CHMP2B, FUS, TARBP, DCTN1 and SQSTM1. The frequency of each mutation varies 

according to the geographical location. In a USA-based cohort (DeJesus-Hernandez et al., 

2011) C9ORF72 was the most common mutation, whereas in a Dutch cohort (Simon-Sanchez 

et al., 2012) MAPT mutations were more common, and in a UK-based cohort C9ORF72 

expansions and MAPT mutations occurred with equal frequency (Mahoney et al., 2012). 

Clinical phenotypes vary across the different genetic syndromes, but certain phenotypes are 

more commonly associated with specific mutations. For GRN mutations, the most common 

phenotypes are bvFTD, followed by PNFA and corticobasal syndrome (Chen-Plotkin et al., 

2011; Yu et al., 2010). MAPT mutations are also most frequently associated with bvFTD, but 

language presentations including semantic impairment have also been described (Seelaar et 

al., 2008). For both MAPT and GRN mutations, patients can present with parkinsonian motor 

symptoms (Rohrer and Warren, 2011). Therefore, extrapolating from the clinical presentation 

to the underlying pathology or genetic abnormality remains inaccurate. 
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Rationale to model FTD in mice 

Given the heterogeneity of FTD, a wide range of transgenic mouse models have been 

designed, predominantly aiming at recapitulating neuropathological and molecular changes of 

disease. Mice, as the most commonly used model organism, have a neuronal network similar 

to humans and allow for molecular and functional studies at the gene and protein level 

(Roberson, 2012). As model systems, however, most transgenic lines focus on a specific 

protein or genetic mutation. Together with the species-typical presentation of functional 

deficits, this limits the extent to which we can generalize from findings from these models to 

humans. Therefore, understanding the phenotypical presentations in mice and how they relate 

to clinical symptomology and functional deficits in humans is essential for advancing 

translation.  

Importantly, mouse models of FTD offer the potential to help understand the pathological 

mechanisms that underlie the clinical features of the disease in vivo. A major advantage of 

these models is that they allow for the monitoring of early pathological changes, which is 

difficult to achieve in humans with the current diagnostic standards. A plethora of in vivo and 

ex vivo techniques enable studying pathological changes in mouse models up to the molecular 

level. Animal models also offer the potential to establish proof-of-principle evidence for 

targeting specific pathomechanisms, for example by using genetic tools such as knockout 

mice, or to trial treatments and examine their effects on underlying pathological processes at 

different (early) disease stages. For example in Alzheimer‟s disease, a number of treatments 

have shown promise at the mouse model level, yet extrapolating these findings to humans has 

been troublesome. 

In FTD, which predominantly involves emotional behavioral and language changes – 

cognitive domains that might lack clear equivalents in other species – finding animal models 

that reflect these changes and functional deficits has proven difficult. On the other hand, 

recently pervasive changes in physiology and metabolism in FTD have been suggested, which 

may be easier and more valid to study in mouse models, including their impact on 

behavioural and cognitive changes (Ahmed et al., 2016c; Fletcher et al., 2015). Although this 
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review focuses on mouse models of FTD and their potential contribution to understanding 

disease, other species – both of lower (e.g. C. elegans or Drosophila) or higher order (e.g. 

primates) – are likely to contribute within their own realms. Accordingly, no single species 

will likely be sufficient to capture the marked heterogeneity of FTD presentations and 

combinations across mice, and other species may be required. 

 

A new approach: examining clinical features/functional impairment in FTD and 

transgenic mouse models 

Transgenic mouse models, alone or in combination, have been key to understanding 

fundamental molecular pathomechanisms in FTD and other neurodegenerative conditions 

(Boxer et al., 2013; Roberson, 2012) [For a list and description of currently available mouse 

models see http://www.alzforum.org/research-models/search]. There is little doubt that this 

will continue to be the case and that these models will provide in-depth understanding of 

underlying pathomechanisms. However, given the complexity of FTD genetics and pathology 

and the heterogeneous phenotypes across mouse models in terms of pathology and functional 

impairments, it is important to assess existing and novel transgenic mouse models by taking 

the clinical symptoms and functional deficits of human FTD into account. This may establish 

confidence in mouse model-based therapeutic developments. A holistic approach where 

multiple models are examined based on functional impairments in relation to clinical 

presentations and functional deficits in humans may facilitate conclusions that will aid 

understanding of brain networks involved. This will in turn aid earlier diagnoses and targeting 

of treatments. Therefore, we review FTD mouse models in the context of the functional 

impairments seen in human FTD including behavioral, socioemotional, memory, language, 

eating and metabolism, and motor. Figure 1 shows the specific phenotypes reported in a 

selection of current transgenic mouse models of FTD, and proposed future directions. 

 

Behavioural changes in FTD 

Behavioral changes in humans 
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Assessment of behavioral changes represents a cornerstone of the investigation of bvFTD, 

forming the basis of the current diagnostic criteria (Rascovsky et al., 2011). Patients with 

bvFTD typically present with changes in behavior ranging from apathy, reduced motivation, 

inertia, and a lack of interest in previous hobbies(Piguet et al., 2011), to disinhibition with 

impulsive and often socially inappropriate actions, such as overspending, gambling, or 

sexually inappropriate remarks (Rascovsky et al., 2011). Mental rigidity and stereotypical 

behavior are also widely reported by caregivers, leading to alterations in food preferences and 

eating behavior (see below). Interestingly, recent studies have elucidated commonalities in 

the neural substrates of behavioral changes in FTD. For example, both disinhibited 

(Hornberger et al., 2011) and apathetic (Go et al., 2012) behaviors relate to atrophy in the 

orbitofrontal cortex, one of the core sites of early pathology (Seeley, 2008).  

 

Behavioral changes in mouse models 

Concerted efforts have been directed at modeling behavioral changes and socioemotional 

dysfunction in transgenic mouse models of FTD (Roberson, 2012). Behavioural changes 

including disinhibition and apathy have been reported in mutant tau transgenic mouse lines. 

These specific behavioral changes display in mice as hyperactivity assessed in the open field 

arena (with increased locomotor activity and altered exploration patterns of the novel 

environment), or reduced anxiety in the elevated plus maze, light/dark chamber, and cued 

fear-conditioning paradigms (Cook et al., 2014; Pennanen et al., 2006; Przybyla et al., 2016; 

Van der Jeugd et al., 2016). The contribution of fear-associated memory deficits, however, 

remains unclear. These types of behavioral alterations in tau transgenic mice are thought to 

result mainly from pathology in the amygdala, although detailed investigations of the 

orbitofrontal cortex integrity are lacking, despite the use of pan-neuronal promoters that drive 

expression throughout the forebrain. This may be partly due to studies focusing in their 

behavioral analysis on well-defined anatomical structures, such as the hippocampus and 

amygdala (Pennanen et al., 2004). Interestingly, young tau transgenic mice display impaired 

nest-building behavior, suggesting apathy (another common symptom observed in FTD 
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patients) (Warmus et al., 2014), or decreased attention. Recently a forebrain-specific 

(CaMKIIα promoter), human mutated Tau (hTauP301L+R406W) knock-in mouse was 

generated which showed heightened anxiety and depressive/ apathetic behavior (Koss et al., 

2016). Similar to tau transgenic mice, GRN knockout mice display impaired fear conditioning 

(Filiano et al., 2013) and remain immobile for longer periods in the forced swim test (Yin et 

al., 2010), which may relate to a depressive-like state. This suggests a complex alteration to 

emotional behavior in GRN knockout lines. A recent adeno-associated virus (AAV)-based 

model expressing human C9ORF72 poly-GC-repeats similarly presented with hyperactivity 

and anxiety-like exploration in the open field arena (Chew et al., 2015). While two transgenic 

mouse lines expressing bacterial artificial chromosomes (BACs) containing the full human 

C9ORF72 gene and ~500 or ~1,000 poly-GC repeats resulted in disease-like 

neuropathological changes (RNA foci and RAN dipeptides) without behavioral deficits or 

neurodegeneration (O'Rourke et al., 2015; Peters et al., 2015), a recent C9ORF72 BAC mouse 

line with ~500 poly-GC repeats presented with both neuropathological changes, paralysis, 

reduced survival, and also anxiety (Liu et al., 2016). The introduction of these C9ORF72 

BAC models will provide the basis for function in-depth studies of associated 

pathomechanisms in vivo. 

 

In a number of mouse models, anxiety paradigms are used, such as the elevated plus maze or 

open field arena. However, locational memory dysfunction may significantly contribute to the 

displayed behavior, which needs to be taken into consideration when interpreting this data 

(Dvorkin et al., 2008). Reduced levels of anxiety in mice could be interpreted as excessive 

risk-taking behavior and/or disinhibition or even emotional dysfunction, which are often 

observed in FTD patients (Przybyla et al., 2016). These findings illustrate the importance of 

objective evaluations of emotional behavior in mice along with a comprehensive analysis 

(including considering test confounders and false positive results), rather than a blunt 

matching to human symptoms to suggest translation. 
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Other clinically relevant behavioral changes in FTD may have correlates in FTD mouse 

models. Repetitive behavior is a clinical feature in FTD patients (Rascovsky et al., 2011), and 

may be represented in mice by abnormal repetitive grooming. For example, repetitive 

grooming has been reported in aged mutant tau-transgenic mice where it increases with age, 

and is hypothesized to reflect ventral striatum dysfunction (Warmus et al., 2014). 

Interestingly, this dysfunction correlates with the severity of repetitive behaviors in FTD 

patients (Josephs et al., 2008). Treatment of tau transgenic mice with the NMDA receptor co-

agonist cycloserine to increase NMDA receptor functioning significantly decreased 

grooming, as well as improved nest building and elevated plus maze performance in these 

mice, and was thought to mediate its effects through improving synaptic deficits in the 

striatum (Warmus et al., 2014). Over-grooming has also been observed in transgenic mice 

with forebrain-specific expression of FTD mutant CHMP2B.(Gascon et al., 2014) 

 

Socioemotional changes in FTD 

Socioemotional changes in humans 

Social dysfunction represents one of the hallmark features of FTD, with caregivers reporting 

prominent changes in social comportment, appropriateness, as well as reduced social interest 

leading to social withdrawal (Piguet et al., 2011). Altered emotion processing is widely 

documented in FTD patients, with recognition of negative emotions such as anger, fear, and 

disgust, predominantly affected (Kumfor et al., 2013; Werner et al., 2007). These difficulties 

extend beyond the recognition of facial emotional expressions and lead to a marked inability 

to empathize or to share the emotional experience of others (Dermody et al., 2016; Rankin et 

al., 2005). Recently clinical research in FTD has focused on the link between emotion 

processing and physiological changes in terms of autonomic function in FTD (Fletcher et al., 

2015; Guo et al., 2016). In addition, FTD patients have difficulty inferring the thoughts and 

beliefs of others (i.e., theory of mind) (Adenzato et al., 2010), resulting in an apparent lack of 

regard for the thoughts and feelings of others (Hsieh et al., 2013; Lough et al., 2006). 
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Mounting evidence suggests that these deficits map to medial prefrontal and right anterior 

temporal lobe pathology (Irish et al., 2014a; Rankin et al., 2006). 

 

Socioemotional changes in mouse models 

Reduced social engagement and aggression has been demonstrated in a number of GRN 

knockout mice (Filiano et al., 2013; Ghoshal et al., 2012; Petkau et al., 2012; Yin et al., 

2010), which may align with the social dysfunction observed in FTD. Interestingly, social and 

emotional dysfunction were attributed to impaired neuronal activation in the amygdala 

(Filiano et al., 2013). Mutant tau expressing mice have been reported to display impairments 

in the Crawley‟s social interaction test (a test examining sociability and social novelty 

(Crawley, 2004)) , suggestive of reduced sociability and/or impaired recognition memory 

(Takeuchi et al., 2011). Furthermore, mice expressing non-functional TDP-43 (lacking the 

nuclear localization sequence) in forebrain neurons displayed reduced sniffing behavior in the 

social interaction test (Alfieri et al., 2014). Reduced performance in the social interaction test 

has also been reported for mice expressing 66 G4C2 repeats to mimic C9ORF72 repeat 

expansion (Chew et al., 2015). Mice with forebrain-specific expression of mutant CHMP2B 

displayed reduced sociability as measured by the Crawley‟s social interaction test (Gascon et 

al., 2014). Together, these studies suggest that social dysfunction is a common phenotype 

across various FTD mouse models, unifying the different types of pathogenic transgenes 

expressed. Future research in this area could examine the applicability of physiological 

measures e.g., heart rate, skin conductance, pupillary response and autonomic function 

previously used in humans to examine social and emotional dysfunction, to mouse models. 

 

Memory dysfunction in FTD 

Memory dysfunction in humans 

Perhaps the most commonly studied cognitive function in dementia is episodic memory, 

which refers to the ability to consciously encode, store, and retrieve information regarding 

previously experienced events. Episodic memory dysfunction represents the hallmark feature 
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of Alzheimer‟s disease (AD), with marked deficits evident on standard neuropsychological 

tests of visual and verbal recall (de Toledo-Morrell et al., 2000; Irish et al., 2016) and the 

recall of personally relevant autobiographical memories (Irish et al., 2011b).  

 

Not surprisingly, mouse models of AD rely heavily on behavioral paradigms of hippocampal-

dependent learning and memory, with typical tasks such as the Morris water maze, radial arm 

maze, and novel object recognition tests (Gotz and Ittner, 2008). While crucial to functionally 

validate disease mechanisms, these behavioral paradigms have not been widely applied to 

FTD mouse models. This lack of research reflects a long-held, but erroneous, assumption that 

hippocampal functioning, and therefore episodic memory, is relatively spared in humans with 

FTD as reflected in the current diagnostic criteria for bvFTD (Rascovsky et al., 2011). 

Mounting evidence from neuroimaging and neuropsychological studies in humans, however, 

converge to reveal clear-cut episodic memory deficits in FTD (Hornberger and Piguet, 2012). 

Patients display memory impairment equivalent to that of matched AD cases across 

standardized tests of verbal and visual, immediate and delayed, recall (Hornberger et al., 

2010; Irish et al., 2014c; Pennington et al., 2011), and retrieval of autobiographical events 

from the past (Irish et al., 2011a; Irish et al., 2014b). These deficits extend to the domain of 

source memory, with bvFTD patients being unable to correctly retrieve the spatial or temporal 

context of previously presented items (Irish et al., 2012a; Söderlund et al., 2008). Recently it 

has been suggested that verbal impairments in FTD may confound memory function (Baldock 

et al., 2016), however verbal deficits tend to occur late in the bvFTD disease course. Further, 

while initially it was assumed that episodic memory impairments in bvFTD stemmed from 

the degeneration of prefrontal cortical regions (Pennington et al., 2011; Simons et al., 2002), 

it is becoming increasingly clear that the hippocampus and anterior and medial temporal 

regions are also involved (Frisch et al., 2013; Irish et al., 2014c). As such, we propose that the 

long-standing view that behavioral paradigms of hippocampal-dependent learning in FTD 

mouse models are not relevant to clinical FTD warrants revision 
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Memory dysfunction in mouse models 

Classic episodic memory based tests such as the Morris water maze have, in fact, 

demonstrated memory impairments in several FTD mouse models, such as for mutant tau 

(Santacruz et al., 2005; Tatebayashi et al., 2002), TDP-43 (Swarup et al., 2011) and VCP 

transgenic (Custer et al., 2010; Rodriguez-Ortiz et al., 2013), and GRN knockout mice 

(Ghoshal et al., 2012; Wils et al., 2012; Yin et al., 2010). A new and increasingly popular 

method of assessing cognitive function in mice is through the use of automated touchscreen 

operant chambers, which involve training animals to use touchscreen platforms to respond to 

various stimuli presented on a screen to receive a food reward (Horner et al., 2013; Mar et al., 

2013; Oomen et al., 2013). In many cases, these tasks are similar to those used in human 

cognitive testing (e.g., Cambridge neuropsychological test automated battery) and can be used 

to assess a range of neuropsychological functions, such as learning, memory, attention and 

cognitive flexibility. A further benefit of this technique is the low stress levels involved, due 

to appetitive (positive) rather than aversive reinforcement. Although the technique may have 

high translational potential (Horner et al., 2013; Mar et al., 2013; Oomen et al., 2013), it is 

labor- and cost-intensive, and trials often take many weeks of continual testing. Therefore, 

other paradigms, such as the radial arm maze, T-maze and Barne‟s maze that cause 

significantly less stress than, for example, the Morris water maze, remain valid alternatives. 

Nevertheless, automated and standardized memory testing may overcome the limited 

comparability of other non-standardized tests, allowing cross-comparison between the various 

tasks and FTD mouse models. To date, automated touchscreen operant chambers have not 

been used in FTD mouse models. Testing well-defined human FTD cohorts and 

corresponding transgenic mouse models of FTD in parallel using similar touchscreen test 

protocols may therefore serve to increase our understanding of the cognitive deficits in 

humans with FTD and the underlying molecular mechanisms in mice. 

 

Language impairment in FTD 

Language impairment in humans 
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Language impairment in FTD is complex with 2 distinct clinical presentations: svPPA 

associated with progressive breakdown of the semantic memory (the memory system that 

stores knowledge about objects and words) and PNFA by a progressive breakdown in speech 

output with effortful, non-fluent speech, characterized by agrammatism, and/or problems with 

motor-based speech planning, termed apraxia of speech, characterized by groping, 

segmentation and loss of prosody (Ash et al., 2009; Josephs et al., 2006a). Mutations in 

FOXP2 have been associated with severe language deficits (Lai et al., 2003). Interestingly, 

FOXP2 polymorphisms, although not constituting a genetic risk for FTD, when present, 

reduce language performance and impact on perfusion of language-associated brain areas in 

overt FTD (Padovani et al., 2010; Premi et al., 2012). Both FOXP2 protein and mRNA were 

found to be reduced in the frontal cortex in a small cohort of FTD with tau pathology and 

language impairment (Lopez-Gonzalez et al., 2016). 

 

Language impairment in mouse models 

Examining language in mouse models is complex. An interesting example of a clinical 

symptom-driven approach was provided by Menuet et al, who examined whether language 

anomalies in FTD patients have a correlate in tau transgenic mouse models (Menuet et al., 

2011). The study found impaired ultrasonic vocalizations in aged mutant tau mice, which 

correlated with tau pathology in midbrain and brainstem nuclei controlling vocalization and 

respiration (Menuet et al., 2011). This may partially resemble the language disorders 

observed in FTD patients, and awaits confirmation in other lines. It would also be interesting 

to determine how altered vocalization in tau transgenic mice is affected by tau-targeted 

therapeutic intervention. The degree to which muscle anomalies of the larynx contribute to 

impaired vocalization remains unclear, especially as wasting of large muscles has been 

reported in several tau transgenic lines (Ittner et al., 2008; Lewis et al., 2000; Probst et al., 

2000). Showing parallels to FTD in humans, both FOXP2 protein and mRNA levels were 

reduced in mutant tau transgenic mice (Lopez-Gonzalez et al., 2016). Furthermore, 

heterozygous depletion of FOXP2 or mutant FOXP2 knockin in mice resulted in altered 
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ultrasonic vocalization, while learning and memory appeared normal (Fujita et al., 2008; Shu 

et al., 2005). These findings suggest that ultrasonic vocalization in mice, although not 

resembling the complexity of human language, may be an according readout in mice to study 

molecular mechanisms underlying language changes in FTD, for example by crossing mutant 

FOXP2 mice with FTD models. Yet, the ability to examine semantic deficits in mouse models 

remains limited, and other approaches examining behavioral responses to vocalisations and 

learned “rules” and “syntax” may prove fruitful. Recent models have attempted to examine 

semantic knowledge using food preference studies (Koss et al., 2016), however this approach 

is problematic given the changes in food preference that are seen in both bvFTD and svPPA. 

The origins of such changes are inherently complex, attributable to neural atrophy in 

orbitofrontal cortex, hypothalamus reward structures, and regions supporting semantic 

knowledge (Ahmed et al., 2016b). Taken together, mouse models may contribute to the 

understanding of underlying mechanisms in semantic deficits in FTD by using ultrasonic 

vocalization as a surrogate readout for changes in „language‟ formation, but it is unlikely that 

using a single one species will ever capture the complexity of human language. As such, the 

study of species with more complex vocalization patterns (e.g. song birds) may prove helpful 

to elucidate language features of FTD.  

 

Eating behavior and metabolism in FTD 

Eating behavior and metabolism in humans 

Alterations in eating behavior (hyperphagia or preference for sweet foods) are one of the 

diagnostic criteria for bvFTD (Ahmed et al., 2014a; Ahmed et al., 2016b; Ahmed et al., 

2016c; Ikeda et al., 2002; Rascovsky et al., 2011). It is increasingly recognized that such 

changes are also present in sv-PPA (Ahmed et al., 2014a; Ikeda et al., 2002). Eating changes 

affect metabolism and possibly disease progression and prognosis (Ahmed et al., 2014b). 

Patients with FTD and in particular bvFTD have been shown to have an increased body mass 

(BMI) index, which has been suggested anecdotally to be less than expected for their caloric 

intake. Changes in HDL cholesterol and triglyceride levels, with increased fasting serum 
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insulin, further suggest a state of insulin resistance (Ahmed et al., 2014b). In ALS a 

contrasting metabolic pattern has been observed including a state of hypermetabolism 

(Desport et al., 2005), with low BMI (Dupuis et al., 2011; Jawaid et al., 2010a), but similarly 

to FTD, hyperlipidemia including increased triglyceride levels (Dupuis et al., 2008) and 

peripheral insulin resistance (Jawaid et al., 2010b). These variables have been found to affect 

disease progression in ALS with an increased triglyceride level (Dorst et al., 2011), increased 

low density lipoprotein (LDL) to high density lipoprotein (HDL) ratio (Dupuis et al., 2008) 

and the presence of diabetes mellitus thought to be protective against disease progression 

(Dupuis et al., 2008; Jawaid et al., 2010b). In ALS, low BMI has been associated with worse 

prognosis; however, it has also been shown that as ALS patients develop cognitive 

impairment, their BMI increases, suggesting that BMI patterns in ALS in addition to being 

influenced by peripheral factors, such as muscle wasting, may be centrally mediated (Ahmed 

et al., 2014c). 

 

Eating behavior and metabolism in mouse models 

A detailed understanding of eating behavior and metabolic changes in current FTD mouse 

models is lacking. There is the suggestion that metabolic changes may be associated with the 

process of neurodegeneration with several mouse models including TDP-43 and C9ORF72 

associated with weight loss (Chew et al., 2015; Chiang et al., 2010; Dupuis et al., 2004; Shan 

et al., 2010; Xu et al., 2010). Recent studies have also shown that high fat diet-induced 

obesity exacerbates tau pathology in mutant tau transgenic mice (Koga et al., 2014; 

Leboucher et al., 2013). Similarly, it has being shown that diabetes exacerbates tau deposition 

(Ke et al., 2009), suggesting cross-talk between metabolism and brain pathology in FTD. 

Furthermore, recent studies in normal mice have suggested that both excitatory and inhibitory 

input to similar neural correlates to those suggested to be involved in humans with FTD 

(Ahmed et al., 2015; Perry et al., 2014) results in hyperphagic behavior and sucrose 

preference, showing that the lateral hypothalamus connects to the reward centers in the 

ventral tegmental area, that may mediate sucrose preference (Nieh et al., 2015). Future studies 
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need to determine the effects of neuronal expression of FTD mutant proteins on metabolic 

parameters and regulation of weight in mice, potentially providing important insights as to 

what controls eating and metabolism in FTD.  

 

Several ALS mouse models also present with alterations in energy metabolism. For example, 

mutant SOD1 mouse models demonstrate hypermetabolism (Dupuis et al., 2004), with a 

delayed disease onset and increased survival mediated by a high fat diet, while caloric 

restriction shortens the lifespan and induces lipid peroxidation, inflammation and apoptosis 

(Dupuis et al., 2004; Patel et al., 2010). A recent study in ALS (Vercruysse et al., 2016) 

revealed that hypothalamic neurons producing proopiomelanocortin (POMC) were decreased 

and the endogenous melanocortin inhibitor agouti-related peptide (AGRP) (a known appetite 

stimulator), increased in mice expressing amyotrophic lateral sclerosis-linked mutant 

SOD1(G86R). Consistent with a defect in the hypothalamic melanocortin system, food intake 

after short-term fasting was increased in SOD1(G86R) mice. These findings were replicated 

in two other amyotrophic lateral sclerosis mouse models based on TDP-43 (Tardbp) and FUS 

mutations. These findings show a potential correlation with human studies with AGRP found 

to be elevated in FTD patients and associated with abnormal eating behavior and changes in 

BMI (Ahmed et al., 2015). 

 

Motor Symptoms and FTD 

Motor symptoms in humans 

Motor symptoms are a common feature of FTD; a significant proportion of patients develop 

symptoms reminiscent of Parkinson‟s disease (i.e., parkinsonism) (Siuda et al., 2014), and 

FTD and ALS are part of a disease continuum with overlapping clinical presentations (Burrell 

et al., 2016). Accordingly, 10-15% of FTD patients have concomitant ALS, while 25-60% 

show evidence of motor neuron dysfunction insufficient to reach criteria for ALS (Burrell et 

al., 2011; Josephs et al., 2006b; Lomen-Hoerth et al., 2002). Conversely, cognitive testing of 

ALS patients revealed frequent frontal executive (Ringholz et al., 2005) and language deficits 
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(Caselli et al., 1993) (Duffy et al., 2007), and behavioral features including apathy, loss of 

empathy, emotional lability and, less commonly, gluttony, behavioral stereotypes and 

compulsions (Gibbons ZC, 2008), typical of FTD. Therefore, it has been suggested that FTD 

and ALS represent extremes of a disease spectrum (Clark and Forman, 2006). Between 10-

50% of FTD patients develop features of parkinsonism (Siuda et al., 2014), most frequently 

observed in „FTD with Parkinsonism linked to chromosome 17q‟ (FTDP-17) (Wszolek et al., 

2006), with mutations also identified in MAPT and GRN (Siuda et al., 2014). Furthermore, 

poly-GC-repeat expansions in C9ORF72 have been associated with parkinsonism (Park and 

Chung, 2013). At autopsy, ALS-like motor symptoms are typically associated with TDP-43 

pathology, while parkinsonism tends to be associated with tau pathology (Siuda et al., 2014).  

 

Motor symptoms in mouse models 

Interestingly, motor deficits were the first prominent motor phenotype described in non-

mutant and mutant tau transgenic mouse models of FTD [ALZ17, JNPL3] (Lewis et al., 2000; 

Probst et al., 2000). In several of the tau models, motor deficits have been described in 

association with muscle weakness and postural changes [JNPL3(P301L)] (Lewis et al., 2000), 

paraparesis [Tau P301S (Line PS19)] (Yoshiyama et al., 2007) and dystonic features [Tau 

R406W] (Tatebayashi et al., 2002). Furthermore, we have described an FTD mutant line, K3, 

which developed all aspects of FTD-associated parkinsonism including early resistance to L-

dopa treatment (Ittner et al., 2008). These mouse models have been instrumental in 

developing tau-targeted treatments, in particular due to the early-onset progressive motor 

phenotype (Ittner et al., 2015; van Eersel et al., 2010). Other FTD mouse models have 

presented with motor deficits. For example, TDP-43 transgenic mouse models are reported to 

show a wide range of changes from limited motor impairments (Wegorzewska et al., 2009), 

decreased grip strength and gait abnormalities, to profound muscle weakness (Tsao et al., 

2012; Wegorzewska et al., 2009; Wils et al., 2010; Xu et al., 2010). This includes more recent 

mutant TDP-43 mouse models with controllable transgene expression and rapid development 

of motor and behavioral deficits, together with FTD-like biochemical and histopathological 
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changes (Ke et al., 2015; Walker et al., 2015). It would be of interest to differentiate between 

motor phenotypes due to muscle wasting, and those resulting from neuronal dysfunction. 

Here, the association of motor deficits and atrophy/pathology of specific brain regions in 

human FTD may assist in analyzing specific brain area and structures in FTD mouse models, 

to elucidate underlying molecular pathomechanisms. Furthermore, motor phenotypes in FTD 

mouse models, even if not resembling a dominant clinical feature of the human disease, 

should be used as simple functional surrogate readouts for molecular studies and drug 

development (van Eersel et al., 2010).  

 

 

Future directions 

While commonly used constitutively expressing FTD mouse models have been instrumental 

in studying biochemical and histological aspects of FTD and to test therapeutic interventions, 

they have certain limitations. For example, spread of neuropathological changes which has 

been documented in humans is difficult to replicate in mouse models with the „all or none‟ 

pattern of constitutive transgene expression. This is of particular relevance given the 

increasing interest in pathological spread in a prion-like manner and network involvement in 

FTD and ALS. (Braak et al., 2013; Ludolph and Brettschneider, 2015; Tan et al., 2015). It is 

increasingly recognized that FTD, rather than reflecting a single protein or neuronal area, 

represents systems or network degeneration (Ahmed et al., 2016a; Eisen and Turner, 2013; 

Irish et al., 2012b; Warren et al., 2013). Models proposed include “molecular nexopathies” 

which suggests that proposed deposition and propagation of proteins along particular 

networks potentially in a prion-like manner is responsible for phenotypic FTD presentations 

(Warren et al., 2013). The extension of proposals such as this into animal models offers the 

potential to not only understand different phenotypic presentations in FTD, but also to trial 

treatments targeted at particular networks and examine the effects of developmental, 

environmental and social modifications on the expression of disease phenotypes.  
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Neuronal network aberrations have been described for transgenic mouse models using 

electroencephalography (Hall et al., 2015), imaging (Busche et al., 2008), and computational 

methods to mine EEG data for network performance. Several recording types appear 

particularly relevant as their network features and can be related to cognitive performance by 

computational means; hippocampal recordings from the cornu ammonis (CA) region for 

example provide insight on performance and topology of pyramidal/interneuronal 

connections that are reflected in EEG gamma and theta oscillations and their phase-coupling 

(Buzsaki and Moser, 2013). Spontaneous and induced hyperexcitability have also been 

observed in tau transgenic mouse models (Garcia-Cabrero et al., 2013). However, detailed 

analysis of network topology by EEG or electrophysiology of single cells in situ in tau 

transgenic mice has not been performed. Network alterations in FTD mouse models using, 

TDP-43 overexpression or C9ORF72 repeat expansion have also not been addressed. 

Recently optogenetics have made manipulation of neuronal systems in vivo feasible (Marton 

and Sohal, 2015). Combining functional network analysis by EEG, electrophysiology or 

imaging with induced changes in activity of specific neuronal ensembles by optogenetics is 

likely to prove a valuable tool to address whether network aberrations can be manipulated or 

even reversed by specifically targeting subsets of neurons (e.g. interneurons). Insights from 

these induced network outputs can then be correlated with cognitive performance.  

 

The use of transgenic promoters with high expression levels, which may be needed to achieve 

pathology within the life-time of a mouse, limits the ability of cells to regulate protein levels, 

including during brain development. Although, mutant proteins may be similarly present 

during development in human mutation carriers, unphysiological levels at embryonic and/or 

early post-natal stages may have developmental effects that contribute to later phenotypes 

(Cannon et al., 2012). Using inducible promoters and expression in mature brains is an 

elegant way to circumvent this problem, and has been used in a number of more recent tau 

and TDP-43 transgenic mouse models (Santacruz et al., 2005; Xu et al., 2010). Notably, we 

have recently used inducible human mutant TDP-43 mice to show that short term suppression 
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of pathological TDP-43 results in significant improvements of functional deficits, supporting 

the development of future compounds that target TDP-43 directly to treat FTD (Ke et al., 

2015). Furthermore, the availability of advanced genome-editing technologies, such as 

CRISPR (LaFountaine et al., 2015), allows simple introduction of pathogenic mutations into 

endogenous mouse genes, or exchange parts or whole loci to humanize the murine gene 

product, while still using endogenous promoters, as recently reported for the amyloid-β 

precursor protein (APP) locus (Saito et al., 2014). Similar humanized FTD models may 

advance our current understanding of the disease and overcome limitations of current 

transgenic lines.  

 

While some human FTD cases present with a single type of pathology at autopsy, the 

heterogeneity of the disease, both pathologically and clinically, is remarkable (Rohrer et al., 

2011). Typically, transgenic mouse models express one pathogenic factor, such as mutant tau 

or TDP-43, which assist in understating specific disease mechanism, but limits translation to 

the heterogeneous pathology seen in humans. Combinatorial approaches, by intercrossing 

different transgenic lines, have had a significant impact on understanding disease mechanisms 

in AD (Ittner et al., 2010; Kulic et al., 2011; Lewis et al., 2001; Oddo et al., 2003). Similar 

combinatorial approaches utilizing existing FTD models with different transgenes, or in the 

future by introducing multiple humanized FTD genes, may provide a similar advance in 

understanding the pathogenesis of FTD.  

 

As outlined above, the clinical presentation of FTD includes a wide range of functional 

changes, with behavioral, memory, language, eating/metabolic, and motor deficits, in addition 

to variable neuropathology. Here, FTD mouse models may only recapitulate single or a small 

number of the clinical features. Accordingly, few FTD mouse model studies have attempted 

to address multiple aspects of the clinical symptoms, focusing instead on specific phenotypes. 

While this appears to be a disadvantage at first sight, it offers the opportunity to reduce the 
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complexity of the human disease to tractable „building blocks‟ and allows studying 

underlying mechanisms of distinct aspects of disease. Combinations of models may then be 

used to „rebuild‟ the complexity of the human disease and inform the cross-impact of 

individual aspects on each other, to eventually elucidate FTD in its entirety. Future studies of 

FTD mouse models should consider overlapping, including comprehensive functional testing 

with complementary paradigms. Furthermore, using established associations between 

functional deficits and localization of pathology in human FTD should guide the functional 

analysis of mouse models, rather than retrospective matching of phenotypes to clinical 

symptoms and pathology. The development of new techniques to examine differing 

functional deficits across multiple domains (Table 2) may improve hypothesis testing and 

translation, and thus advance our understanding of human pathophysiology. 

 

Inter-individual genetic and environmental variability in humans contributes to significant 

differences in disease presentation across patients, including for example incomplete 

penetrance in C9ORF72 mutation carriers or varying age of onset (Hodges, 2012).Typically, 

when generating transgenic mouse models of FTD and other diseases, researchers go to great 

lengths to achieve identical genetic backgrounds, that is by backcrossing on defined inbred 

strains (such as C57BL/6J) over more than 10 generations, in order to control for variability 

and reduce the sample sizes needed to carry out an experiment. This is particularly important 

for behavioral testing, where variability in genetic backgrounds could result in inconsistent 

results and the need for very large group sizes. While advocating for clean genetic 

backgrounds when establishing new transgenic mouse lines, inbred lines likely fail to capture 

varying phenotypes due to the impact of environmental factors on genetic variability. 

Utilizing new platform resources with defined variability of genetic backgrounds in mice, 

such as the Collaborative Cross may in the future allow genetic modifiers in FTD mouse 

models to be addressed (Bogue et al., 2015) to provide new insight into the pathological and 

clinical variability of FTD in humans. Such approaches, however, are labor-, resource- and 
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cost-intensive and will depend on well-defined models of FTD with highly penetrant 

phenotypes, and are therefore only likely to succeed within large research collaborations. 

Another approach may be to use the concept of endophenotypes which are heritable traits that 

are considered to be more highly associated with a gene based neurological deficit than a 

disease phenotype itself. These endophenotypes can be present in the non- affected relatives 

of patients affected with disease and suggestions have been made to utilize this approach in 

diseases such as schizophrenia (Amann et al., 2010; Desbonnet et al., 2009). This approach 

may aid in understanding underlying disease pathomechanisms and trialing treatments. 

Taken together, we propose that an approach of (re-)examining FTD mouse models based on 

functional impairment in human patients will help to elucidate the underlying process of 

neurodegeneration in FTD (Figure 1). Examining FTD mouse models driven by functional 

impairment from humans across multiple pathologies and genetic changes will elucidate the 

specific networks involved and therefore may have greater clinical applicability. Defining 

FTD mouse models, in isolation or in combination, based on functional deficits driven by 

clinical observations may also improve drug development and testing. Therefore, 

complementing the current neuropathology-driven approach of matching pathology to single 

symptoms with a more functional approach offers unique potential to improve translation of 

animal models to humans. We suggest that this approach will aid the development of new 

therapeutic strategies in the hope of modifying disease prognosis and progression. 

  



 25 

References: 

Adenzato M., Cavallo M., Enrici I., 2010. Theory of mind ability in the behavioural 
variant of frontotemporal dementia: an analysis of the neural, cognitive, 
and social levels. Neuropsychologia. 48, 2-12. 

Ahmed R.M., Irish M., Kam J., van Keizerswaard J., Bartley L., Samaras K., Hodges 
J.R., Piguet O., 2014a. Quantifying the eating abnormalities in 
frontotemporal dementia. JAMA Neurol. 71, 1540-6. 

Ahmed R.M., MacMillan M., Bartley L., Halliday G.M., Kiernan M.C., Hodges J.R., 
Piguet O., 2014b. Systemic metabolism in frontotemporal dementia. 
Neurology. 83, 1812-8. 

Ahmed R.M., Mioshi E., Caga J., Shibata M., Zoing M., Bartley L., Piguet O., Hodges 
J.R., Kiernan M.C., 2014c. Body mass index delineates ALS from FTD: 
implications for metabolic health. J Neurol. 261, 1774-80. 

Ahmed R.M., Latheef S., Bartley L., Irish M., Halliday G.M., Kiernan M.C., Hodges 
J.R., Piguet O., 2015. Eating behavior in frontotemporal dementia: 
Peripheral hormones vs hypothalamic pathology. Neurology. 85, 1310-7. 

Ahmed R.M., Devenney E.M., Irish M., Ittner A., Naismith S., Ittner L.M., Rohrer 
J.D., Halliday G.M., Eisen A., Hodges J.R., Kiernan M.C., 2016a. Neuronal 
network disintegration: common pathways linking neurodegenerative 
diseases. J Neurol Neurosurg Psychiatry. 

Ahmed R.M., Irish M., Henning E., Dermody N., Bartley L., Kiernan M.C., Piguet O., 
Farooqi S., Hodges J.R., 2016b. Assessment of Eating Behavior Disturbance 
and Associated Neural Networks in Frontotemporal Dementia. JAMA 
Neurol. 73, 282-90. 

Ahmed R.M., Irish M., Piguet O., Halliday G.M., Ittner L.M., Farooqi S., Hodges J.R., 
Kiernan M.C., 2016c. Amyotrophic lateral sclerosis and frontotemporal 
dementia: distinct and overlapping changes in eating behaviour and 
metabolism. Lancet Neurol. 15, 332-42. 

Ahmed Z., Bigio E.H., Budka H., Dickson D.W., Ferrer I., Ghetti B., Giaccone G., 
Hatanpaa K.J., Holton J.L., Josephs K.A., Powers J., Spina S., Takahashi H., 
White C.L., 3rd, Revesz T., Kovacs G.G., 2013. Globular glial tauopathies 
(GGT): consensus recommendations. Acta Neuropathol. 126, 537-44. 

Alfieri J.A., Pino N.S., Igaz L.M., 2014. Reversible behavioral phenotypes in a 
conditional mouse model of TDP-43 proteinopathies. J Neurosci. 34, 
15244-59. 

Amann L.C., Gandal M.J., Halene T.B., Ehrlichman R.S., White S.L., McCarren H.S., 
Siegel S.J., 2010. Mouse behavioral endophenotypes for schizophrenia. 
Brain Res Bull. 83, 147-61. 

Ash S., Moore P., Vesely L., Gunawardena D., McMillan C., Anderson C., Avants B., 
Grossman M., 2009. Non-Fluent Speech in Frontotemporal Lobar 
Degeneration. J Neurolinguistics. 22, 370-383. 

Baldock D., Miller J.B., Leger G.C., Banks S.J., 2016. Memory Test Performance on 
Analogous Verbal and Nonverbal Memory Tests in Patients with 
Frontotemporal Dementia and Alzheimer's Disease. Dement Geriatr Cogn 
Dis Extra. 6, 20-7. 

Bogue M.A., Churchill G.A., Chesler E.J., 2015. Collaborative Cross and Diversity 
Outbred data resources in the Mouse Phenome Database. Mamm Genome. 

Boxer A.L., Gold M., Huey E., Gao F.B., Burton E.A., Chow T., Kao A., Leavitt B.R., 
Lamb B., Grether M., Knopman D., Cairns N.J., Mackenzie I.R., Mitic L., 



 26 

Roberson E.D., Van Kammen D., Cantillon M., Zahs K., Salloway S., Morris 
J., Tong G., Feldman H., Fillit H., Dickinson S., Khachaturian Z., Sutherland 
M., Farese R., Miller B.L., Cummings J., 2013. Frontotemporal 
degeneration, the next therapeutic frontier: molecules and animal models 
for frontotemporal degeneration drug development. Alzheimers Dement. 
9, 176-88. 

Braak H., Brettschneider J., Ludolph A.C., Lee V.M., Trojanowski J.Q., Del Tredici 
K., 2013. Amyotrophic lateral sclerosis--a model of corticofugal axonal 
spread. Nat Rev Neurol. 9, 708-14. 

Brettschneider J., Del Tredici K., Toledo J.B., Robinson J.L., Irwin D.J., Grossman 
M., Suh E., Van Deerlin V.M., Wood E.M., Baek Y., Kwong L., Lee E.B., Elman 
L., McCluskey L., Fang L., Feldengut S., Ludolph A.C., Lee V.M., Braak H., 
Trojanowski J.Q., 2013. Stages of pTDP-43 pathology in amyotrophic 
lateral sclerosis. Ann Neurol. 74, 20-38. 

Brettschneider J., Del Tredici K., Irwin D.J., Grossman M., Robinson J.L., Toledo 
J.B., Lee E.B., Fang L., Van Deerlin V.M., Ludolph A.C., Lee V.M., Braak H., 
Trojanowski J.Q., 2014. Sequential distribution of pTDP-43 pathology in 
behavioral variant frontotemporal dementia (bvFTD). Acta Neuropathol. 
127, 423-39. 

Burrell J.R., Kiernan M.C., Vucic S., Hodges J.R., 2011. Motor neuron dysfunction 
in frontotemporal dementia. Brain. 134, 2582-94. 

Burrell J.R., Halliday G.M., Kril J.J., Ittner L.M., Gotz J., Kiernan M.C., Hodges J.R., 
2016. The frontotemporal dementia-motor neuron disease continuum. 
Lancet. 

Busche M.A., Eichhoff G., Adelsberger H., Abramowski D., Wiederhold K.H., Haass 
C., Staufenbiel M., Konnerth A., Garaschuk O., 2008. Clusters of 
hyperactive neurons near amyloid plaques in a mouse model of 
Alzheimer's disease. Science. 321, 1686-9. 

Buzsaki G., Moser E.I., 2013. Memory, navigation and theta rhythm in the 
hippocampal-entorhinal system. Nat Neurosci. 16, 130-8. 

Cannon A., Yang B., Knight J., Farnham I.M., Zhang Y., Wuertzer C.A., D'Alton S., 
Lin W.L., Castanedes-Casey M., Rousseau L., Scott B., Jurasic M., Howard J., 
Yu X., Bailey R., Sarkisian M.R., Dickson D.W., Petrucelli L., Lewis J., 2012. 
Neuronal sensitivity to TDP-43 overexpression is dependent on timing of 
induction. Acta Neuropathol. 123, 807-23. 

Caselli R.J., Windebank A.J., Petersen R.C., Komori T., Parisi J.E., Okazaki H., 
Kokmen E., Iverson R., Dinapoli R.P., Graff-Radford N.R., et al., 1993. 
Rapidly progressive aphasic dementia and motor neuron disease. Ann 
Neurol. 33, 200-7. 

Chen-Plotkin A.S., Martinez-Lage M., Sleiman P.M., Hu W., Greene R., Wood E.M., 
Bing S., Grossman M., Schellenberg G.D., Hatanpaa K.J., Weiner M.F., White 
C.L., 3rd, Brooks W.S., Halliday G.M., Kril J.J., Gearing M., Beach T.G., Graff-
Radford N.R., Dickson D.W., Rademakers R., Boeve B.F., Pickering-Brown 
S.M., Snowden J., van Swieten J.C., Heutink P., Seelaar H., Murrell J.R., 
Ghetti B., Spina S., Grafman J., Kaye J.A., Woltjer R.L., Mesulam M., Bigio E., 
Llado A., Miller B.L., Alzualde A., Moreno F., Rohrer J.D., Mackenzie I.R., 
Feldman H.H., Hamilton R.L., Cruts M., Engelborghs S., De Deyn P.P., Van 
Broeckhoven C., Bird T.D., Cairns N.J., Goate A., Frosch M.P., Riederer P.F., 
Bogdanovic N., Lee V.M., Trojanowski J.Q., Van Deerlin V.M., 2011. Genetic 



 27 

and clinical features of progranulin-associated frontotemporal lobar 
degeneration. Arch Neurol. 68, 488-97. 

Chew J., Gendron T.F., Prudencio M., Sasaguri H., Zhang Y.J., Castanedes-Casey M., 
Lee C.W., Jansen-West K., Kurti A., Murray M.E., Bieniek K.F., Bauer P.O., 
Whitelaw E.C., Rousseau L., Stankowski J.N., Stetler C., Daughrity L.M., 
Perkerson E.A., Desaro P., Johnston A., Overstreet K., Edbauer D., 
Rademakers R., Boylan K.B., Dickson D.W., Fryer J.D., Petrucelli L., 2015. 
Neurodegeneration. C9ORF72 repeat expansions in mice cause TDP-43 
pathology, neuronal loss, and behavioral deficits. Science. 348, 1151-4. 

Chiang P.M., Ling J., Jeong Y.H., Price D.L., Aja S.M., Wong P.C., 2010. Deletion of 
TDP-43 down-regulates Tbc1d1, a gene linked to obesity, and alters body 
fat metabolism. Proc Natl Acad Sci U S A. 107, 16320-4. 

Clark C.M., Forman M.S., 2006. Frontotemporal lobar degeneration with motor 
neuron disease: a clinical and pathological spectrum. Arch Neurol. 63, 
489-90. 

Cook C., Dunmore J.H., Murray M.E., Scheffel K., Shukoor N., Tong J., Castanedes-
Casey M., Phillips V., Rousseau L., Penuliar M.S., Kurti A., Dickson D.W., 
Petrucelli L., Fryer J.D., 2014. Severe amygdala dysfunction in a MAPT 
transgenic mouse model of frontotemporal dementia. Neurobiol Aging. 
35, 1769-77. 

Crawley J.N., 2004. Designing mouse behavioral tasks relevant to autistic-like 
behaviors. Ment Retard Dev Disabil Res Rev. 10, 248-58. 

Custer S.K., Neumann M., Lu H., Wright A.C., Taylor J.P., 2010. Transgenic mice 
expressing mutant forms VCP/p97 recapitulate the full spectrum of 
IBMPFD including degeneration in muscle, brain and bone. Hum Mol 
Genet. 19, 1741-55. 

de Toledo-Morrell L., Dickerson B., Sullivan M.P., Spanovic C., Wilson R., Bennett 
D.A., 2000. Hemispheric differences in hippocampal volume predict 
verbal and spatial memory performance in patients with Alzheimer's 
disease. Hippocampus. 10, 136-42. 

DeJesus-Hernandez M., Mackenzie I.R., Boeve B.F., Boxer A.L., Baker M., 
Rutherford N.J., Nicholson A.M., Finch N.A., Flynn H., Adamson J., Kouri N., 
Wojtas A., Sengdy P., Hsiung G.Y., Karydas A., Seeley W.W., Josephs K.A., 
Coppola G., Geschwind D.H., Wszolek Z.K., Feldman H., Knopman D.S., 
Petersen R.C., Miller B.L., Dickson D.W., Boylan K.B., Graff-Radford N.R., 
Rademakers R., 2011. Expanded GGGGCC hexanucleotide repeat in 
noncoding region of C9ORF72 causes chromosome 9p-linked FTD and 
ALS. Neuron. 72, 245-56. 

Dermody N., Wong S., Ahmed R., Piguet O., Hodges J.R., Irish M., 2016. Uncovering 
the Neural Bases of Cognitive and Affective Empathy Deficits in 
Alzheimer's Disease and the Behavioral-Variant of Frontotemporal 
Dementia. J Alzheimers Dis. 53, 801-16. 

Desbonnet L., Waddington J.L., Tuathaigh C.M., 2009. Mice mutant for genes 
associated with schizophrenia: common phenotype or distinct 
endophenotypes? Behav Brain Res. 204, 258-73. 

Desport J.C., Torny F., Lacoste M., Preux P.M., Couratier P., 2005. 
Hypermetabolism in ALS: correlations with clinical and paraclinical 
parameters. Neurodegener Dis. 2, 202-7. 



 28 

Dorst J., Kuhnlein P., Hendrich C., Kassubek J., Sperfeld A.D., Ludolph A.C., 2011. 
Patients with elevated triglyceride and cholesterol serum levels have a 
prolonged survival in amyotrophic lateral sclerosis. J Neurol. 258, 613-7. 

Duffy J.R., Peach R.K., Strand E.A., 2007. Progressive apraxia of speech as a sign of 
motor neuron disease. Am J Speech Lang Pathol. 16, 198-208. 

Dupuis L., Oudart H., Rene F., Gonzalez de Aguilar J.L., Loeffler J.P., 2004. 
Evidence for defective energy homeostasis in amyotrophic lateral 
sclerosis: benefit of a high-energy diet in a transgenic mouse model. Proc 
Natl Acad Sci U S A. 101, 11159-64. 

Dupuis L., Corcia P., Fergani A., Gonzalez De Aguilar J.L., Bonnefont-Rousselot D., 
Bittar R., Seilhean D., Hauw J.J., Lacomblez L., Loeffler J.P., Meininger V., 
2008. Dyslipidemia is a protective factor in amyotrophic lateral sclerosis. 
Neurology. 70, 1004-9. 

Dupuis L., Pradat P.F., Ludolph A.C., Loeffler J.P., 2011. Energy metabolism in 
amyotrophic lateral sclerosis. Lancet Neurol. 10, 75-82. 

Dvorkin A., Benjamini Y., Golani I., 2008. Mouse cognition-related behavior in the 
open-field: emergence of places of attraction. PLoS Comput Biol. 4, 
e1000027. 

Eisen A., Turner M.R., 2013. Does variation in neurodegenerative disease 
susceptibility and phenotype reflect cerebral differences at the network 
level? Amyotroph Lateral Scler Frontotemporal Degener. 14, 487-93. 

Filiano A.J., Martens L.H., Young A.H., Warmus B.A., Zhou P., Diaz-Ramirez G., Jiao 
J., Zhang Z., Huang E.J., Gao F.B., Farese R.V., Jr., Roberson E.D., 2013. 
Dissociation of frontotemporal dementia-related deficits and 
neuroinflammation in progranulin haploinsufficient mice. J Neurosci. 33, 
5352-61. 

Fletcher P.D., Nicholas J.M., Shakespeare T.J., Downey L.E., Golden H.L., Agustus 
J.L., Clark C.N., Mummery C.J., Schott J.M., Crutch S.J., Warren J.D., 2015. 
Physiological phenotyping of dementias using emotional sounds. 
Alzheimers Dement (Amst). 1, 170-178. 

Frisch S., Dukart J., Vogt B., Horstmann A., Becker G., Villringer A., Barthel H., 
Sabri O., Muller K., Schroeter M.L., 2013. Dissociating memory networks 
in early Alzheimer's disease and frontotemporal lobar degeneration - a 
combined study of hypometabolism and atrophy. PLoS One. 8, e55251. 

Fujita E., Tanabe Y., Shiota A., Ueda M., Suwa K., Momoi M.Y., Momoi T., 2008. 
Ultrasonic vocalization impairment of Foxp2 (R552H) knockin mice 
related to speech-language disorder and abnormality of Purkinje cells. 
Proc Natl Acad Sci U S A. 105, 3117-22. 

Garcia-Cabrero A.M., Guerrero-Lopez R., Giraldez B.G., Llorens-Martin M., Avila J., 
Serratosa J.M., Sanchez M.P., 2013. Hyperexcitability and epileptic 
seizures in a model of frontotemporal dementia. Neurobiol Dis. 58, 200-8. 

Gascon E., Lynch K., Ruan H., Almeida S., Verheyden J.M., Seeley W.W., Dickson 
D.W., Petrucelli L., Sun D., Jiao J., Zhou H., Jakovcevski M., Akbarian S., Yao 
W.D., Gao F.B., 2014. Alterations in microRNA-124 and AMPA receptors 
contribute to social behavioral deficits in frontotemporal dementia. Nat 
Med. 20, 1444-51. 

Ghoshal N., Dearborn J.T., Wozniak D.F., Cairns N.J., 2012. Core features of 
frontotemporal dementia recapitulated in progranulin knockout mice. 
Neurobiol Dis. 45, 395-408. 



 29 

Gibbons ZC R.A., Neary O, Snowden JS. 2008. Behaviour in amyotrophic lateral 
sclerosis. Amyotroph Lateral Scler. 9, 67-74. 

Go C., Mioshi E., Yew B., Hodges J.R., Hornberger M., 2012. Neural correlates of 
behavioural symptoms in behavioural variant frontotemporal dementia 
and Alzheimer's disease: Employment of a visual MRI rating scale. 
Dementia and Neuropsychologia. 6, 12-17. 

Gorno-Tempini M.L., Hillis A.E., Weintraub S., Kertesz A., Mendez M., Cappa S.F., 
Ogar J.M., Rohrer J.D., Black S., Boeve B.F., Manes F., Dronkers N.F., 
Vandenberghe R., Rascovsky K., Patterson K., Miller B.L., Knopman D.S., 
Hodges J.R., Mesulam M.M., Grossman M., 2011. Classification of primary 
progressive aphasia and its variants. Neurology. 76, 1006-14. 

Gotz J., Ittner L.M., 2008. Animal models of Alzheimer's disease and 
frontotemporal dementia. Nat Rev Neurosci. 9, 532-44. 

Guo C.C., Sturm V.E., Zhou J., Gennatas E.D., Trujillo A.J., Hua A.Y., Crawford R., 
Stables L., Kramer J.H., Rankin K., Levenson R.W., Rosen H.J., Miller B.L., 
Seeley W.W., 2016. Dominant hemisphere lateralization of cortical 
parasympathetic control as revealed by frontotemporal dementia. Proc 
Natl Acad Sci U S A. 

Hall A.M., Throesch B.T., Buckingham S.C., Markwardt S.J., Peng Y., Wang Q., 
Hoffman D.A., Roberson E.D., 2015. Tau-dependent Kv4.2 depletion and 
dendritic hyperexcitability in a mouse model of Alzheimer's disease. J 
Neurosci. 35, 6221-30. 

Hodges J., 2012. Familial frontotemporal dementia and amyotrophic lateral 
sclerosis associated with the C9ORF72 hexanucleotide repeat. Brain. 135, 
652-5. 

Hodges J.R., Patterson K., 2007. Semantic dementia: a unique clinicopathological 
syndrome. Lancet Neurol. 6, 1004-14. 

Hornberger M., Piguet O., Graham A.J., Nestor P.J., Hodges J.R., 2010. How 
preserved is episodic memory in behavioral variant frontotemporal 
dementia? Neurology. 74, 472-479. 

Hornberger M., Geng J., Hodges J.R., 2011. Convergent grey and white matter 
evidence of orbitofrontal cortex changes related to disinhibition in 
behavioural variant frontotemporal dementia. Brain. 134, 2502-12. 

Hornberger M., Piguet O., 2012. Episodic memory in frontotemporal dementia: a 
critical review. Brain. 135, 678-92. 

Horner A.E., Heath C.J., Hvoslef-Eide M., Kent B.A., Kim C.H., Nilsson S.R., Alsio J., 
Oomen C.A., Holmes A., Saksida L.M., Bussey T.J., 2013. The touchscreen 
operant platform for testing learning and memory in rats and mice. Nat 
Protoc. 8, 1961-84. 

Hsieh S., Irish M., Daveson N., Hodges J.R., Piguet O., 2013. When One Loses 
Empathy: Its Effect on Carers of Patients With Dementia. J Geriatr 
Psychiatry Neurol. 

Ikeda M., Brown J., Holland A.J., Fukuhara R., Hodges J.R., 2002. Changes in 
appetite, food preference, and eating habits in frontotemporal dementia 
and Alzheimer's disease. J Neurol Neurosurg Psychiatry. 73, 371-6. 

Irish M., Hornberger M., Lah S., Miller L., Pengas G., Nestor P.J., Hodges J.R., Piguet 
O., 2011a. Profiles of recent autobiographical memory retrieval in 
semantic dementia, behavioural-variant frontotemporal dementia, and 
Alzheimer's disease. Neuropsychologia. 49, 2694-702. 



 30 

Irish M., Lawlor B.A., O'Mara S.M., Coen R.F., 2011b. Impaired capacity for 
autonoetic reliving during autobiographical event recall in mild 
Alzheimer's disease. Cortex. 47, 236-249. 

Irish M., Graham A., Graham K.S., Hodges J.R., Hornberger M., 2012a. Differential 
Impairment of Source Memory in Progressive Versus Non-progressive 
Behavioral Variant Frontotemporal Dementia. Archives of Clinical 
Neuropsychology. 27, 338-347. 

Irish M., Piguet O., Hodges J.R., 2012b. Self-projection and the default network in 
frontotemporal dementia. Nat Rev Neurol. 8, 152-61. 

Irish M., Hodges J.R., Piguet O., 2014a. Right anterior temporal lobe dysfunction 
underlies theory of mind impairments in semantic dementia. Brain. 137, 
1241-1253. 

Irish M., Hornberger M., El Wahsh S., Lam B.Y., Lah S., Miller L., Hsieh S., Hodges 
J.R., Piguet O., 2014b. Grey and White Matter Correlates of Recent and 
Remote Autobiographical Memory Retrieval - Insights from the 
Dementias. PLoS One. 9, e113081. 

Irish M., Piguet O., Hodges J.R., Hornberger M., 2014c. Common and unique grey 
matter correlates of episodic memory dysfunction in frontotemporal 
dementia and Alzheimer's disease. Human Brain Mapping. 35, 1422-1435. 

Irish M., Bunk S., Tu S., Kamminga J., Hodges J.R., Hornberger M., Piguet O., 2016. 
Preservation of episodic memory in semantic dementia: The importance 
of regions beyond the medial temporal lobes. Neuropsychologia. 81, 50-
60. 

Ittner A., Bertz J., Suh L.S., Stevens C.H., Gotz J., Ittner L.M., 2015. Tau-targeting 
passive immunization modulates aspects of pathology in tau transgenic 
mice. J Neurochem. 132, 135-45. 

Ittner L.M., Fath T., Ke Y.D., Bi M., van Eersel J., Li K.M., Gunning P., Gotz J., 2008. 
Parkinsonism and impaired axonal transport in a mouse model of 
frontotemporal dementia. Proc Natl Acad Sci U S A. 105, 15997-6002. 

Ittner L.M., Ke Y.D., Delerue F., Bi M., Gladbach A., van Eersel J., Wolfing H., Chieng 
B.C., Christie M.J., Napier I.A., Eckert A., Staufenbiel M., Hardeman E., Gotz 
J., 2010. Dendritic function of tau mediates amyloid-beta toxicity in 
Alzheimer's disease mouse models. Cell. 142, 387-97. 

Jawaid A., Murthy S.B., Wilson A.M., Qureshi S.U., Amro M.J., Wheaton M., Simpson 
E., Harati Y., Strutt A.M., York M.K., Schulz P.E., 2010a. A decrease in body 
mass index is associated with faster progression of motor symptoms and 
shorter survival in ALS. Amyotroph Lateral Scler. 11, 542-8. 

Jawaid A., Salamone A.R., Strutt A.M., Murthy S.B., Wheaton M., McDowell E.J., 
Simpson E., Appel S.H., York M.K., Schulz P.E., 2010b. ALS disease onset 
may occur later in patients with pre-morbid diabetes mellitus. Eur J 
Neurol. 17, 733-9. 

Josephs K.A., Duffy J.R., Strand E.A., Whitwell J.L., Layton K.F., Parisi J.E., Hauser 
M.F., Witte R.J., Boeve B.F., Knopman D.S., Dickson D.W., Jack C.R., Jr., 
Petersen R.C., 2006a. Clinicopathological and imaging correlates of 
progressive aphasia and apraxia of speech. Brain. 129, 1385-98. 

Josephs K.A., Parisi J.E., Knopman D.S., Boeve B.F., Petersen R.C., Dickson D.W., 
2006b. Clinically undetected motor neuron disease in pathologically 
proven frontotemporal lobar degeneration with motor neuron disease. 
Arch Neurol. 63, 506-12. 



 31 

Josephs K.A., Whitwell J.L., Jack C.R., Jr., 2008. Anatomic correlates of stereotypies 
in frontotemporal lobar degeneration. Neurobiol Aging. 29, 1859-63. 

Josephs K.A., Hodges J.R., Snowden J.S., Mackenzie I.R., Neumann M., Mann D.M., 
Dickson D.W., 2011. Neuropathological background of phenotypical 
variability in frontotemporal dementia. Acta Neuropathol. 122, 137-53. 

Ke Y.D., Delerue F., Gladbach A., Gotz J., Ittner L.M., 2009. Experimental diabetes 
mellitus exacerbates tau pathology in a transgenic mouse model of 
Alzheimer's disease. PLoS One. 4, e7917. 

Ke Y.D., van Hummel A., Stevens C.H., Gladbach A., Ippati S., Bi M., Lee W.S., 
Kruger S., van der Hoven J., Volkerling A., Bongers A., Halliday G., Haass 
N.K., Kiernan M., Delerue F., Ittner L.M., 2015. Short-term suppression of 
A315T mutant human TDP-43 expression improves functional deficits in 
a novel inducible transgenic mouse model of FTLD-TDP and ALS. Acta 
Neuropathol. 130, 661-78. 

Koga S., Kojima A., Ishikawa C., Kuwabara S., Arai K., Yoshiyama Y., 2014. Effects 
of diet-induced obesity and voluntary exercise in a tauopathy mouse 
model: implications of persistent hyperleptinemia and enhanced 
astrocytic leptin receptor expression. Neurobiol Dis. 71, 180-92. 

Koss D.J., Robinson L., Drever B.D., Plucinska K., Stoppelkamp S., Veselcic P., 
Riedel G., Platt B., 2016. Mutant Tau knock-in mice display frontotemporal 
dementia relevant behaviour and histopathology. Neurobiol Dis. 91, 105-
23. 

Kulic L., Wollmer M.A., Rhein V., Pagani L., Kuehnle K., Cattepoel S., Tracy J., 
Eckert A., Nitsch R.M., 2011. Combined expression of tau and the 
Harlequin mouse mutation leads to increased mitochondrial dysfunction, 
tau pathology and neurodegeneration. Neurobiol Aging. 32, 1827-38. 

Kumfor F., Irish M., Hodges J.R., Piguet O., 2013. Discrete Neural Correlates for 
the Recognition of Negative Emotions: Insights from Frontotemporal 
Dementia. PLoS One. 8, e67457. 

LaFountaine J.S., Fathe K., Smyth H.D., 2015. Delivery and Therapeutic 
Applications of Gene Editing Technologies ZFNs, TALENs, and 
CRISPR/Cas9. Int J Pharm. 

Lai C.S., Gerrelli D., Monaco A.P., Fisher S.E., Copp A.J., 2003. FOXP2 expression 
during brain development coincides with adult sites of pathology in a 
severe speech and language disorder. Brain. 126, 2455-62. 

Leboucher A., Laurent C., Fernandez-Gomez F.J., Burnouf S., Troquier L., 
Eddarkaoui S., Demeyer D., Caillierez R., Zommer N., Vallez E., Bantubungi 
K., Breton C., Pigny P., Buee-Scherrer V., Staels B., Hamdane M., Tailleux A., 
Buee L., Blum D., 2013. Detrimental effects of diet-induced obesity on tau 
pathology are independent of insulin resistance in tau transgenic mice. 
Diabetes. 62, 1681-8. 

Lewis J., McGowan E., Rockwood J., Melrose H., Nacharaju P., Van Slegtenhorst M., 
Gwinn-Hardy K., Paul Murphy M., Baker M., Yu X., Duff K., Hardy J., Corral 
A., Lin W.L., Yen S.H., Dickson D.W., Davies P., Hutton M., 2000. 
Neurofibrillary tangles, amyotrophy and progressive motor disturbance 
in mice expressing mutant (P301L) tau protein. Nat Genet. 25, 402-5. 

Lewis J., Dickson D.W., Lin W.L., Chisholm L., Corral A., Jones G., Yen S.H., Sahara 
N., Skipper L., Yager D., Eckman C., Hardy J., Hutton M., McGowan E., 2001. 



 32 

Enhanced neurofibrillary degeneration in transgenic mice expressing 
mutant tau and APP. Science. 293, 1487-91. 

Liu Y., Pattamatta A., Zu T., Reid T., Bardhi O., Borchelt D.R., Yachnis A.T., Ranum 
L.P., 2016. C9orf72 BAC Mouse Model with Motor Deficits and 
Neurodegenerative Features of ALS/FTD. Neuron. 90, 521-34. 

Lomen-Hoerth C., Anderson T., Miller B., 2002. The overlap of amyotrophic 
lateral sclerosis and frontotemporal dementia. Neurology. 59, 1077-9. 

Lopez-Gonzalez I., Palmeira A., Aso E., Carmona M., Fernandez L., Ferrer I., 2016. 
FOXP2 Expression in Frontotemporal Lobar Degeneration-Tau. J 
Alzheimers Dis. 54, 471-5. 

Lough S., Kipps C., Treise C., Watson P., Blair J., Hodges J., 2006. Social reasoning, 
emotion and empathy in frontotemporal dementia. Neuropsychologia. 44, 
950-958. 

Ludolph A.C., Brettschneider J., 2015. TDP-43 in amyotrophic lateral sclerosis - is 
it a prion disease? Eur J Neurol. 22, 753-61. 

Mackenzie I.R., Neumann M., Baborie A., Sampathu D.M., Du Plessis D., Jaros E., 
Perry R.H., Trojanowski J.Q., Mann D.M., Lee V.M., 2011. A harmonized 
classification system for FTLD-TDP pathology. Acta Neuropathol. 122, 
111-3. 

Mahoney C.J., Beck J., Rohrer J.D., Lashley T., Mok K., Shakespeare T., Yeatman T., 
Warrington E.K., Schott J.M., Fox N.C., Rossor M.N., Hardy J., Collinge J., 
Revesz T., Mead S., Warren J.D., 2012. Frontotemporal dementia with the 
C9ORF72 hexanucleotide repeat expansion: clinical, neuroanatomical and 
neuropathological features. Brain. 135, 736-50. 

Mar A.C., Horner A.E., Nilsson S.R., Alsio J., Kent B.A., Kim C.H., Holmes A., Saksida 
L.M., Bussey T.J., 2013. The touchscreen operant platform for assessing 
executive function in rats and mice. Nat Protoc. 8, 1985-2005. 

Marton T.F., Sohal V.S., 2015. Of Mice, Men, and Microbial Opsins: How 
Optogenetics Can Help Hone Mouse Models of Mental Illness. Biol 
Psychiatry. 

Menuet C., Cazals Y., Gestreau C., Borghgraef P., Gielis L., Dutschmann M., Van 
Leuven F., Hilaire G., 2011. Age-related impairment of ultrasonic 
vocalization in Tau.P301L mice: possible implication for progressive 
language disorders. PLoS One. 6, e25770. 

Mitsuyama Y., Inoue T., 2009. Clinical entity of frontotemporal dementia with 
motor neuron disease. Neuropathology. 29, 649-54. 

Nieh E.H., Matthews G.A., Allsop S.A., Presbrey K.N., Leppla C.A., Wichmann R., 
Neve R., Wildes C.P., Tye K.M., 2015. Decoding Neural Circuits that Control 
Compulsive Sucrose Seeking. Cell. 160, 528-41. 

O'Rourke J.G., Bogdanik L., Muhammad A.K., Gendron T.F., Kim K.J., Austin A., 
Cady J., Liu E.Y., Zarrow J., Grant S., Ho R., Bell S., Carmona S., Simpkinson 
M., Lall D., Wu K., Daughrity L., Dickson D.W., Harms M.B., Petrucelli L., Lee 
E.B., Lutz C.M., Baloh R.H., 2015. C9orf72 BAC Transgenic Mice Display 
Typical Pathologic Features of ALS/FTD. Neuron. 88, 892-901. 

Oddo S., Caccamo A., Shepherd J.D., Murphy M.P., Golde T.E., Kayed R., Metherate 
R., Mattson M.P., Akbari Y., LaFerla F.M., 2003. Triple-transgenic model of 
Alzheimer's disease with plaques and tangles: intracellular Abeta and 
synaptic dysfunction. Neuron. 39, 409-21. 



 33 

Oomen C.A., Hvoslef-Eide M., Heath C.J., Mar A.C., Horner A.E., Bussey T.J., Saksida 
L.M., 2013. The touchscreen operant platform for testing working 
memory and pattern separation in rats and mice. Nat Protoc. 8, 2006-21. 

Padovani A., Cosseddu M., Premi E., Archetti S., Papetti A., Agosti C., Bigni B., 
Cerini C., Paghera B., Bellelli G., Borroni B., 2010. The speech and language 
FOXP2 gene modulates the phenotype of frontotemporal lobar 
degeneration. J Alzheimers Dis. 22, 923-31. 

Park H.K., Chung S.J., 2013. New perspective on parkinsonism in frontotemporal 
lobar degeneration. J Mov Disord. 6, 1-8. 

Patel B.P., Safdar A., Raha S., Tarnopolsky M.A., Hamadeh M.J., 2010. Caloric 
restriction shortens lifespan through an increase in lipid peroxidation, 
inflammation and apoptosis in the G93A mouse, an animal model of ALS. 
PLoS One. 5, e9386. 

Pennanen L., Welzl H., D'Adamo P., Nitsch R.M., Gotz J., 2004. Accelerated 
extinction of conditioned taste aversion in P301L tau transgenic mice. 
Neurobiol Dis. 15, 500-9. 

Pennanen L., Wolfer D.P., Nitsch R.M., Gotz J., 2006. Impaired spatial reference 
memory and increased exploratory behavior in P301L tau transgenic 
mice. Genes Brain Behav. 5, 369-79. 

Pennington C., Hodges J.R., Hornberger M., 2011. Neural correlates of episodic 
memory in behavioural variant frontotemporal dementia. Journal of 
Alzheimer's Disease. 24, 261-268. 

Perry D.C., Sturm V.E., Seeley W.W., Miller B.L., Kramer J.H., Rosen H.J., 2014. 
Anatomical correlates of reward-seeking behaviours in behavioural 
variant frontotemporal dementia. Brain. 137, 1621-6. 

Peters O.M., Cabrera G.T., Tran H., Gendron T.F., McKeon J.E., Metterville J., Weiss 
A., Wightman N., Salameh J., Kim J., Sun H., Boylan K.B., Dickson D., 
Kennedy Z., Lin Z., Zhang Y.J., Daughrity L., Jung C., Gao F.B., Sapp P.C., 
Horvitz H.R., Bosco D.A., Brown S.P., de Jong P., Petrucelli L., Mueller C., 
Brown R.H., Jr., 2015. Human C9ORF72 Hexanucleotide Expansion 
Reproduces RNA Foci and Dipeptide Repeat Proteins but Not 
Neurodegeneration in BAC Transgenic Mice. Neuron. 88, 902-9. 

Petkau T.L., Neal S.J., Milnerwood A., Mew A., Hill A.M., Orban P., Gregg J., Lu G., 
Feldman H.H., Mackenzie I.R., Raymond L.A., Leavitt B.R., 2012. Synaptic 
dysfunction in progranulin-deficient mice. Neurobiol Dis. 45, 711-22. 

Piguet O., Hornberger M., Mioshi E., Hodges J.R., 2011. Behavioural-variant 
frontotemporal dementia: diagnosis, clinical staging, and management. 
Lancet Neurol. 10, 162-72. 

Premi E., Pilotto A., Alberici A., Papetti A., Archetti S., Seripa D., Daniele A., 
Masullo C., Garibotto V., Paghera B., Caobelli F., Padovani A., Borroni B., 
2012. FOXP2, APOE, and PRNP: new modulators in primary progressive 
aphasia. J Alzheimers Dis. 28, 941-50. 

Probst A., Gotz J., Wiederhold K.H., Tolnay M., Mistl C., Jaton A.L., Hong M., 
Ishihara T., Lee V.M., Trojanowski J.Q., Jakes R., Crowther R.A., Spillantini 
M.G., Burki K., Goedert M., 2000. Axonopathy and amyotrophy in mice 
transgenic for human four-repeat tau protein. Acta Neuropathol. 99, 469-
81. 

Przybyla M., Stevens C.H., van der Hoven J., Harasta A., Bi M., Ittner A., van 
Hummel A., Hodges J.R., Piguet O., Karl T., Kassiou M., Housley G.D., Ke 



 34 

Y.D., Ittner L.M., Eersel J.V., 2016. Disinhibition-like behavior in a P301S 
mutant tau transgenic mouse model of frontotemporal dementia. 
Neurosci Lett. 631, 24-29. 

Rankin K.P., Kramer J.H., Miller B.L., 2005. Patterns of cognitive and emotional 
empathy in frontotemporal lobar degeneration. Cogn Behav Neurol. 18, 
28-36. 

Rankin K.P., Gorno-Tempini M.L., Allison S.C., Stanley C.M., Glenn S., Weiner M.W., 
Miller B.L., 2006. Structural anatomy of empathy in neurodegenerative 
disease. Brain. 129, 2945-56. 

Rascovsky K., Hodges J.R., Knopman D., Mendez M.F., Kramer J.H., Neuhaus J., van 
Swieten J.C., Seelaar H., Dopper E.G., Onyike C.U., Hillis A.E., Josephs K.A., 
Boeve B.F., Kertesz A., Seeley W.W., Rankin K.P., Johnson J.K., Gorno-
Tempini M.L., Rosen H., Prioleau-Latham C.E., Lee A., Kipps C.M., Lillo P., 
Piguet O., Rohrer J.D., Rossor M.N., Warren J.D., Fox N.C., Galasko D., 
Salmon D.P., Black S.E., Mesulam M., Weintraub S., Dickerson B.C., Diehl-
Schmid J., Pasquier F., Deramecourt V., Lebert F., Pijnenburg Y., Chow 
T.W., Manes F., Grafman J., Cappa S.F., Freedman M., Grossman M., Miller 
B.L., 2011. Sensitivity of revised diagnostic criteria for the behavioural 
variant of frontotemporal dementia. Brain. 134, 2456-77. 

Ratnavalli E., Brayne C., Dawson K., Hodges J.R., 2002. The prevalence of 
frontotemporal dementia. Neurology. 58, 1615-21. 

Ringholz G.M., Appel S.H., Bradshaw M., Cooke N.A., Mosnik D.M., Schulz P.E., 
2005. Prevalence and patterns of cognitive impairment in sporadic ALS. 
Neurology. 65, 586-90. 

Roberson E.D., 2012. Mouse models of frontotemporal dementia. Ann Neurol. 72, 
837-49. 

Rodriguez-Ortiz C.J., Hoshino H., Cheng D., Liu-Yescevitz L., Blurton-Jones M., 
Wolozin B., LaFerla F.M., Kitazawa M., 2013. Neuronal-specific 
overexpression of a mutant valosin-containing protein associated with 
IBMPFD promotes aberrant ubiquitin and TDP-43 accumulation and 
cognitive dysfunction in transgenic mice. Am J Pathol. 183, 504-15. 

Rohrer J.D., Guerreiro R., Vandrovcova J., Uphill J., Reiman D., Beck J., Isaacs A.M., 
Authier A., Ferrari R., Fox N.C., Mackenzie I.R., Warren J.D., de Silva R., 
Holton J., Revesz T., Hardy J., Mead S., Rossor M.N., 2009. The heritability 
and genetics of frontotemporal lobar degeneration. Neurology. 73, 1451-
6. 

Rohrer J.D., Geser F., Zhou J., Gennatas E.D., Sidhu M., Trojanowski J.Q., Dearmond 
S.J., Miller B.L., Seeley W.W., 2010. TDP-43 subtypes are associated with 
distinct atrophy patterns in frontotemporal dementia. Neurology. 75, 
2204-11. 

Rohrer J.D., Lashley T., Schott J.M., Warren J.E., Mead S., Isaacs A.M., Beck J., Hardy 
J., de Silva R., Warrington E., Troakes C., Al-Sarraj S., King A., Borroni B., 
Clarkson M.J., Ourselin S., Holton J.L., Fox N.C., Revesz T., Rossor M.N., 
Warren J.D., 2011. Clinical and neuroanatomical signatures of tissue 
pathology in frontotemporal lobar degeneration. Brain. 134, 2565-81. 

Rohrer J.D., Warren J.D., 2011. Phenotypic signatures of genetic frontotemporal 
dementia. Curr Opin Neurol. 24, 542-9. 

Rohrer J.D., Isaacs A.M., Mizielinska S., Mead S., Lashley T., Wray S., Sidle K., 
Fratta P., Orrell R.W., Hardy J., Holton J., Revesz T., Rossor M.N., Warren 



 35 

J.D., 2015a. C9orf72 expansions in frontotemporal dementia and 
amyotrophic lateral sclerosis. Lancet Neurol. 14, 291-301. 

Rohrer J.D., Nicholas J.M., Cash D.M., van Swieten J., Dopper E., Jiskoot L., van 
Minkelen R., Rombouts S.A., Cardoso M.J., Clegg S., Espak M., Mead S., 
Thomas D.L., De Vita E., Masellis M., Black S.E., Freedman M., Keren R., 
MacIntosh B.J., Rogaeva E., Tang-Wai D., Tartaglia M.C., Laforce R., Jr., 
Tagliavini F., Tiraboschi P., Redaelli V., Prioni S., Grisoli M., Borroni B., 
Padovani A., Galimberti D., Scarpini E., Arighi A., Fumagalli G., Rowe J.B., 
Coyle-Gilchrist I., Graff C., Fallstrom M., Jelic V., Stahlbom A.K., Andersson 
C., Thonberg H., Lilius L., Frisoni G.B., Pievani M., Bocchetta M., Benussi L., 
Ghidoni R., Finger E., Sorbi S., Nacmias B., Lombardi G., Polito C., Warren 
J.D., Ourselin S., Fox N.C., Rossor M.N., Binetti G., 2015b. Presymptomatic 
cognitive and neuroanatomical changes in genetic frontotemporal 
dementia in the Genetic Frontotemporal dementia Initiative (GENFI) 
study: a cross-sectional analysis. Lancet Neurol. 14, 253-62. 

Rosso S.M., Donker Kaat L., Baks T., Joosse M., de Koning I., Pijnenburg Y., de Jong 
D., Dooijes D., Kamphorst W., Ravid R., Niermeijer M.F., Verheij F., Kremer 
H.P., Scheltens P., van Duijn C.M., Heutink P., van Swieten J.C., 2003. 
Frontotemporal dementia in The Netherlands: patient characteristics and 
prevalence estimates from a population-based study. Brain. 126, 2016-22. 

Saito T., Matsuba Y., Mihira N., Takano J., Nilsson P., Itohara S., Iwata N., Saido 
T.C., 2014. Single App knock-in mouse models of Alzheimer's disease. Nat 
Neurosci. 17, 661-3. 

Santacruz K., Lewis J., Spires T., Paulson J., Kotilinek L., Ingelsson M., Guimaraes 
A., DeTure M., Ramsden M., McGowan E., Forster C., Yue M., Orne J., Janus 
C., Mariash A., Kuskowski M., Hyman B., Hutton M., Ashe K.H., 2005. Tau 
suppression in a neurodegenerative mouse model improves memory 
function. Science. 309, 476-81. 

Seelaar H., Kamphorst W., Rosso S.M., Azmani A., Masdjedi R., de Koning I., Maat-
Kievit J.A., Anar B., Donker Kaat L., Breedveld G.J., Dooijes D., Rozemuller 
J.M., Bronner I.F., Rizzu P., van Swieten J.C., 2008. Distinct genetic forms of 
frontotemporal dementia. Neurology. 71, 1220-6. 

Seelaar H., Rohrer J.D., Pijnenburg Y.A., Fox N.C., van Swieten J.C., 2011. Clinical, 
genetic and pathological heterogeneity of frontotemporal dementia: a 
review. J Neurol Neurosurg Psychiatry. 82, 476-86. 

Seeley W.W., 2008. Selective functional, regional, and neuronal vulnerability in 
frontotemporal dementia. Curr Opin Neurol. 21, 701-7. 

Shan X., Chiang P.M., Price D.L., Wong P.C., 2010. Altered distributions of Gemini 
of coiled bodies and mitochondria in motor neurons of TDP-43 transgenic 
mice. Proc Natl Acad Sci U S A. 107, 16325-30. 

Shu W., Cho J.Y., Jiang Y., Zhang M., Weisz D., Elder G.A., Schmeidler J., De Gasperi 
R., Sosa M.A., Rabidou D., Santucci A.C., Perl D., Morrisey E., Buxbaum J.D., 
2005. Altered ultrasonic vocalization in mice with a disruption in the 
Foxp2 gene. Proc Natl Acad Sci U S A. 102, 9643-8. 

Simon-Sanchez J., Dopper E.G., Cohn-Hokke P.E., Hukema R.K., Nicolaou N., 
Seelaar H., de Graaf J.R., de Koning I., van Schoor N.M., Deeg D.J., Smits M., 
Raaphorst J., van den Berg L.H., Schelhaas H.J., De Die-Smulders C.E., 
Majoor-Krakauer D., Rozemuller A.J., Willemsen R., Pijnenburg Y.A., 



 36 

Heutink P., van Swieten J.C., 2012. The clinical and pathological phenotype 
of C9ORF72 hexanucleotide repeat expansions. Brain. 135, 723-35. 

Simons J.S., Verfaellie M., Galton C.J., Miller B.L., Hodges J.R., Graham K.S., 2002. 
Recollection-based memory in frontotemporal dementia: implications for 
theories of long-term memory. Brain. 125, 2523-2536. 

Siuda J., Fujioka S., Wszolek Z.K., 2014. Parkinsonian syndrome in familial 
frontotemporal dementia. Parkinsonism Relat Disord. 20, 957-64. 

Söderlund H., Black S.E., Miller B.L., Freedman M., Levine B., 2008. Episodic 
memory and regional atrophy in frontotemporal lobar degeneration. 
Neuropsychologia. 46, 127-36. 

Swarup V., Phaneuf D., Bareil C., Robertson J., Rouleau G.A., Kriz J., Julien J.P., 
2011. Pathological hallmarks of amyotrophic lateral 
sclerosis/frontotemporal lobar degeneration in transgenic mice produced 
with TDP-43 genomic fragments. Brain. 134, 2610-26. 

Takeuchi H., Iba M., Inoue H., Higuchi M., Takao K., Tsukita K., Karatsu Y., 
Iwamoto Y., Miyakawa T., Suhara T., Trojanowski J.Q., Lee V.M., Takahashi 
R., 2011. P301S mutant human tau transgenic mice manifest early 
symptoms of human tauopathies with dementia and altered sensorimotor 
gating. PLoS One. 6, e21050. 

Tan R.H., Kril J.J., Fatima M., McGeachie A., McCann H., Shepherd C., Forrest S.L., 
Affleck A., Kwok J.B., Hodges J.R., Kiernan M.C., Halliday G.M., 2015. TDP-
43 proteinopathies: pathological identification of brain regions 
differentiating clinical phenotypes. Brain. 138, 3110-22. 

Tatebayashi Y., Miyasaka T., Chui D.H., Akagi T., Mishima K., Iwasaki K., Fujiwara 
M., Tanemura K., Murayama M., Ishiguro K., Planel E., Sato S., Hashikawa 
T., Takashima A., 2002. Tau filament formation and associative memory 
deficit in aged mice expressing mutant (R406W) human tau. Proc Natl 
Acad Sci U S A. 99, 13896-901. 

Tsao W., Jeong Y.H., Lin S., Ling J., Price D.L., Chiang P.M., Wong P.C., 2012. Rodent 
models of TDP-43: recent advances. Brain Res. 1462, 26-39. 

Van der Jeugd A., Vermaercke B., Halliday G.M., Staufenbiel M., Gotz J., 2016. 
Impulsivity, decreased social exploration, and executive dysfunction in a 
mouse model of frontotemporal dementia. Neurobiol Learn Mem. 130, 
34-43. 

van Eersel J., Ke Y.D., Liu X., Delerue F., Kril J.J., Gotz J., Ittner L.M., 2010. Sodium 
selenate mitigates tau pathology, neurodegeneration, and functional 
deficits in Alzheimer's disease models. Proc Natl Acad Sci U S A. 107, 
13888-93. 

Vercruysse P., Sinniger J., El Oussini H., Scekic-Zahirovic J., Dieterle S., Dengler R., 
Meyer T., Zierz S., Kassubek J., Fischer W., Dreyhaupt J., Grehl T., Hermann 
A., Grosskreutz J., Witting A., Van Den Bosch L., Spreux-Varoquaux O., 
Group G.A.S., Ludolph A.C., Dupuis L., 2016. Alterations in the 
hypothalamic melanocortin pathway in amyotrophic lateral sclerosis. 
Brain. 139, 1106-22. 

Walker A.K., Spiller K.J., Ge G., Zheng A., Xu Y., Zhou M., Tripathy K., Kwong L.K., 
Trojanowski J.Q., Lee V.M., 2015. Functional recovery in new mouse 
models of ALS/FTLD after clearance of pathological cytoplasmic TDP-43. 
Acta Neuropathol. 130, 643-60. 



 37 

Warmus B.A., Sekar D.R., McCutchen E., Schellenberg G.D., Roberts R.C., McMahon 
L.L., Roberson E.D., 2014. Tau-mediated NMDA receptor impairment 
underlies dysfunction of a selectively vulnerable network in a mouse 
model of frontotemporal dementia. J Neurosci. 34, 16482-95. 

Warren J.D., Rohrer J.D., Schott J.M., Fox N.C., Hardy J., Rossor M.N., 2013. 
Molecular nexopathies: a new paradigm of neurodegenerative disease. 
Trends Neurosci. 36, 561-9. 

Wegorzewska I., Bell S., Cairns N.J., Miller T.M., Baloh R.H., 2009. TDP-43 mutant 
transgenic mice develop features of ALS and frontotemporal lobar 
degeneration. Proc Natl Acad Sci U S A. 106, 18809-14. 

Werner K., Roberts N., Rosen H., Dean D., Kramer J., Weiner M., Miller B., 
Levenson R., 2007. Emotional reactivity and emotion recognition in 
frontotemporal lobar degeneration. Neurology. 69, 148-155. 

Wils H., Kleinberger G., Janssens J., Pereson S., Joris G., Cuijt I., Smits V., Ceuterick-
de Groote C., Van Broeckhoven C., Kumar-Singh S., 2010. TDP-43 
transgenic mice develop spastic paralysis and neuronal inclusions 
characteristic of ALS and frontotemporal lobar degeneration. Proc Natl 
Acad Sci U S A. 107, 3858-63. 

Wils H., Kleinberger G., Pereson S., Janssens J., Capell A., Van Dam D., Cuijt I., Joris 
G., De Deyn P.P., Haass C., Van Broeckhoven C., Kumar-Singh S., 2012. 
Cellular ageing, increased mortality and FTLD-TDP-associated 
neuropathology in progranulin knockout mice. J Pathol. 228, 67-76. 

Wszolek Z.K., Tsuboi Y., Ghetti B., Pickering-Brown S., Baba Y., Cheshire W.P., 
2006. Frontotemporal dementia and parkinsonism linked to chromosome 
17 (FTDP-17). Orphanet J Rare Dis. 1, 30. 

Xu Y.F., Gendron T.F., Zhang Y.J., Lin W.L., D'Alton S., Sheng H., Casey M.C., Tong J., 
Knight J., Yu X., Rademakers R., Boylan K., Hutton M., McGowan E., Dickson 
D.W., Lewis J., Petrucelli L., 2010. Wild-type human TDP-43 expression 
causes TDP-43 phosphorylation, mitochondrial aggregation, motor 
deficits, and early mortality in transgenic mice. J Neurosci. 30, 10851-9. 

Yin F., Dumont M., Banerjee R., Ma Y., Li H., Lin M.T., Beal M.F., Nathan C., Thomas 
B., Ding A., 2010. Behavioral deficits and progressive neuropathology in 
progranulin-deficient mice: a mouse model of frontotemporal dementia. 
FASEB J. 24, 4639-47. 

Yoshiyama Y., Higuchi M., Zhang B., Huang S.M., Iwata N., Saido T.C., Maeda J., 
Suhara T., Trojanowski J.Q., Lee V.M., 2007. Synapse loss and microglial 
activation precede tangles in a P301S tauopathy mouse model. Neuron. 
53, 337-51. 

Yu C.E., Bird T.D., Bekris L.M., Montine T.J., Leverenz J.B., Steinbart E., Galloway 
N.M., Feldman H., Woltjer R., Miller C.A., Wood E.M., Grossman M., 
McCluskey L., Clark C.M., Neumann M., Danek A., Galasko D.R., Arnold S.E., 
Chen-Plotkin A., Karydas A., Miller B.L., Trojanowski J.Q., Lee V.M., 
Schellenberg G.D., Van Deerlin V.M., 2010. The spectrum of mutations in 
progranulin: a collaborative study screening 545 cases of 
neurodegeneration. Arch Neurol. 67, 161-70. 

 

  



 38 

 

Table 1: Clinical and imaging features of FTD 

 

 bvFTD sv-PPA PNFA AD for 

comparison 

 Cognitive Domains 

Episodic 

memory 

++ intact intact +++ 

Executive 

function 

+++ intact intact ++ 

Orientation intact intact intact +++ 

Spatial memory intact intact intact +++ 

Eating 

behavior 

+++ ++ + intact 

Emotion 

processing 

+++ +++ + + 

Theory of mind +++ ++ intact intact 

Empathy +++ ++  intact 

Language  Can develop 

semantic 

deficits 

Prominent 

semantic deficits 

Non-fluent 

spontaneous 

speech, 

agrammatism, 

apraxia of 

speech, 

anomia. 

 

Can present with 

language 

impairment 

Predominant 

areas of 

atrophy 

Frontoinsular 

cortices, medial 

prefrontal 

cortex, 

spreading to 

include lateral 

and medial 

temporal 

regions 

including 

hippocampus 

Anterior 

temporal 

cortices 

(asymmetric). 

Including 

hippocampus, 

spreads to 

contralateral 

hemisphere and 

ventromedial 

prefrontal 

cortex. 

Asymmetric 

changes 

affecting the 

dominant 

hemisphere, 

usually left 

sided 

Medial temporal 

lobes (entorhinal, 

parahippocampal, 

hippocampus), 

posterior parietal 

cortices, spreads to 

frontal and lateral 

temporal lobes. 

Predominant 

pathological 

protein 

deposition 

TDP-43, Tau, 
FUS 

TDP-43 type C Tau or TDP-
43 type A 

Tau and amyloid 

 

bvFTD= behavioural variant frontotemporal dementia; sv-PPA= semantic variant 

primary progressive aphasia; PNFA= progressive non-fluent aphasia; AD= Alzheimer’s 

disease. Number of + reflects degree of deficit reported in the literature, increasing 

number of + reflects increasing deficits. 
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Table 2: Potential approaches to examine functional deficits between humans and mouse models 

 

 

Functional domains  Deficits in humans with FTD Deficits shown in mouse models Extended approaches to examine 

these domains in mouse models  

Behaviour Pervasive behavioral changes, 

apathy, disinhibition, impulsivity, 

executive dysfunction 

Hyperactivity, apathy, anxiety, 

repetitive behaviors (Cook et al., 

2014; Pennanen et al., 2006; 

Przybyla et al., 2016; Van der 

Jeugd et al., 2016).  

Complex test batteries to exclude 

confounding memory/motivation 

deficits; automated touchscreen 

operant chambers. 

Socioemotional cognition Deficits in emotion processing, 

lack of empathy 

Reduced sociability(Alfieri et al., 

2014; Chew et al., 2015; Filiano et 

al., 2013; Gascon et al., 2014; 

Takeuchi et al., 2011) 

Skin conductance, pupillary response, 

autonomic function in relation to 

emotional stimuli 

Memory Episodic memory deficits 

increasingly recognised 

Episodic memory deficits shown 

on water maze test (Custer et al., 

2010; Ghoshal et al., 2012; 

Santacruz et al., 2005; Swarup et 

al., 2011). 

automated touchscreen operant 

chambers 

Language Deficits in semantic knowledge 

and speech output depending on 

variant. 

Reduced vocalisations(Menuet et 

al., 2011) 

Explore mouse vocalisations in 

different test paradigms 

Eating and metabolism Hyperphagia, rigidity, sucrose 

preference. Suggestion less weight 

gain than expected for intake 

Eating behaviour not examined. 

Several models show weight 

loss(Chew et al., 2015; Chiang et 

al., 2010). Diet may alter tau 

deposition (Koga et al., 2014; 

Leboucher et al., 2013). Several 

ALS models show 

hypermetabolism(Dupuis et al., 

2004; Patel et al., 2010) 

Analyses of weight, fat composition, 

dietary intake and nutrient preference; 

metabolic cages 

Motor Parkinsonism, muscle weakness Weakness, dystonia, Parkinsonism Examine for relationship between 
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and ALS. (Ittner et al., 2015; Ittner et al., 

2008; Lewis et al., 2000; 

Tatebayashi et al., 2002; Tsao et 

al., 2012) 

muscle wasting weakness and 

parkinsonian features 
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Figure 1: Mouse models and reported functional deficits 

 

Figure showing the functional impairments reported in available mouse models and future directions for research to improve clinical and pathological utility 

of mouse models. 
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