22 research outputs found

    Therapeutic inhibition of FcgammaRIIb signaling targets leukemic stem cells in chronic myeloid leukemia

    Get PDF
    Despite the successes achieved with molecular targeted inhibition of the oncogenic driver Bcr-Abl in chronic myeloid leukemia (CML), the majority of patients still require lifelong tyrosine kinase inhibitor (TKI) therapy. This is primarily caused by resisting leukemic stem cells (LSCs), which prevent achievement of treatment-free remission in all patients. Here we describe the ITIM (immunoreceptor tyrosine-based inhibition motif)-containing Fc gamma receptor IIb (FcgammaRIIb, CD32b) for being critical in LSC resistance and show that targeting FcgammaRIIb downstream signaling, by using a Food and Drug Administration-approved BTK inhibitor, provides a successful therapeutic approach. First, we identified FcgammaRIIb upregulation in primary CML stem cells. FcgammaRIIb depletion caused reduced serial re-plaiting efficiency and cell proliferation in malignant cells. FcgammaRIIb targeting in both a transgenic and retroviral CML mouse model provided in vivo evidence for successful LSC reduction. Subsequently, we identified BTK as a main downstream mediator and targeting the Bcr-Abl-FcgammaRIIb-BTK axis in primary CML CD34(+) cells using ibrutinib, in combination with standard TKI therapy, significantly increased apoptosis in quiescent CML stem cells thereby contributing to the eradication of LSCs.. As a potential curative therapeutic approach, we therefore suggest combining Bcr-Abl TKI therapy along with BTK inhibition

    Asymmetric Cell Divisions Sustain Long-Term Hematopoiesis from Single-sorted Human Fetal Liver Cells

    Get PDF
    Hematopoietic stem cells (HSCs) in adult marrow are believed to be derived from fetal liver precursors. To study cell kinetics involved in long-term hematopoiesis, we studied single-sorted candidate HSCs from fetal liver that were cultured in the presence of a mixture of stimulatory cytokines. After 8–10 d, the number of cells in primary cultures varied from <100 to >10,000 cells. Single cells in slow growing colonies were recloned upon reaching a 100–200 cell stage. Strikingly, the number of cells in subclones varied widely again. These results are indicative of asymmetric divisions in primitive hematopoietic cells in which proliferative potential and cell cycle properties are unevenly distributed among daughter cells. The continuous generation of functional heterogeneity among the clonal progeny of HSCs is in support of intrinsic control of stem cell fate and provides a model for the long-term maintenance of hematopoiesis in vitro and in vivo

    Bosutinib versus imatinib for newly diagnosed chronic phase chronic myeloid leukemia: final results from the BFORE trial

    Get PDF
    This analysis from the multicenter, open-label, phase 3 BFORE trial reports efficacy and safety of bosutinib in patients with newly diagnosed chronic phase (CP) chronic myeloid leukemia (CML) after five years' follow-up. Patients were randomized to 400-mg once-daily bosutinib (n = 268) or imatinib (n = 268; three untreated). At study completion, 59.7% of bosutinib- and 58.1% of imatinib-treated patients remained on study treatment. Median duration of treatment and time on study was 55 months in both groups. Cumulative major molecular response (MMR) rate by 5 years was higher with bosutinib versus imatinib (73.9% vs. 64.6%; odds ratio, 1.57 [95% CI, 1.08-2.28]), as were cumulative MR4 (58.2% vs. 48.1%; 1.50 [1.07-2.12]) and MR4.5 (47.4% vs. 36.6%; 1.57 [1.11-2.22]) rates. Superior MR with bosutinib versus imatinib was consistent across Sokal risk groups, with greatest benefit seen in patients with high risk. Treatment-emergent adverse events (TEAEs) were consistent with 12-month data. After 5 years of follow-up there was an increase in the incidence of cardiac, effusion, renal, and vascular TEAEs in bosutinib- and imatinib-treated patients, but overall, no new safety signals were identified. These final results support 400-mg once-daily bosutinib as standard-of-care in patients with newly diagnosed CP CML.This trial was registered at www.clinicaltrials.gov as #NCT02130557

    Heterogeneous bone-marrow stromal progenitors drive myelofibrosis via a druggable alarmin axis

    Get PDF
    Functional contributions of individual cellular components of the bone-marrow microenvironment to myelofibrosis (MF) in patients with myeloproliferative neoplasms (MPNs) are incompletely understood. We aimed to generate a comprehensive map of the stroma in MPNs/MFs on a single-cell level in murine models and patient samples. Our analysis revealed two distinct mesenchymal stromal cell (MSC) subsets as pro-fibrotic cells. MSCs were functionally reprogrammed in a stage-dependent manner with loss of their progenitor status and initiation of differentiation in the pre-fibrotic and acquisition of a pro-fibrotic and inflammatory phenotype in the fibrotic stage. The expression of the alarmin complex S100A8/S100A9 in MSC marked disease progression toward the fibrotic phase in murine models and in patient stroma and plasma. Tasquinimod, a small-molecule inhibiting S100A8/S100A9 signaling, significantly ameliorated the MPN phenotype and fibrosis in JAK2V617F-mutated murine models, highlighting that S100A8/S100A9 is an attractive therapeutic target in MPNs.Leimkühler and colleagues demonstrate that mesenchymal stromal progenitor cells are fibro

    Aurora Kinase Inhibitor PHA-739358 Suppresses Growth of Hepatocellular Carcinoma In Vitro and in a Xenograft Mouse Model1

    Get PDF
    Patients with advanced stages of hepatocellular carcinoma (HCC) face a poor prognosis. Although encouraging clinical results have been obtained with multikinase inhibitor sorafenib, the development of improved therapeutic strategies for HCC remains an urgent goal. Aurora kinases are key regulators of the cell cycle, and their uncontrolled expression promotes aneuploidy and tumor development. In tissue microarray analyses, we detected aurora-A kinase expression in all of the examined 93 human HCC samples, whereas aurora-B kinase expression levels significantly correlated with the proliferation index of HCCs. In addition, two human HCC cell lines (Huh-7 and HepG2) were tested positive for aurora-A and -B and revealed Ser10 phosphorylation of histone H3, indicating an increased aurora-B kinase activity. The antiproliferative features of a novel aurora kinase inhibitor, PHA-739358, currently under investigation in phase 2 clinical trials for other solid tumors, were examined in vitro and in vivo. At concentrations exceeding 50nM, PHA-739358 completely suppressed tumor cell proliferation in cell culture experiments and strongly decreased histone H3 phosphorylation. Cell cycle inhibition and endoreduplication were observed at 50 nM, whereas higher concentrations led to a complete G2/M-phase arrest. In vivo, administration of PHA-739358 resulted in significant tumor growth inhibition at a well-tolerated dose. In combination with sorafenib, additive effects were observed. Remarkably, when tumors restarted to grow under sorafenib monotherapy, subsequent treatment with PHA-739358 induced tumor shrinkage by up to 81%. Thus, targeting aurora kinases with PHA-739358 is a promising therapeutic strategy administered alone or in combination with sorafenib for patients with advanced stages of HCC

    Immunological monitoring of newly diagnosed CML patients treated with bosutinib or imatinib first-line

    Get PDF
    Changes in the immune system induced by tyrosine kinase inhibitors (TKI) have been shown to positively correlate with therapy responses in chronic myeloid leukemia (CML). However, only a few longitudinal studies exist and no randomized comparisons between two TKIs have been reported. Therefore, we prospectively analyzed the immune system of newly diagnosed CML patients treated with imatinib (n = 20) or bosutinib (n = 13), that participated in the randomized BFORE trial (NCT02130557). Comprehensive immunophenotyping, plasma protein profiling, and functional assays to determine activation levels of T and NK cells were performed at diagnosis, 3, and 12 months after therapy start. All results were correlated with clinical parameters such as Sokal risk and BCR-ABL load measured according to IS%. At diagnosis, low Sokal risk CML patients had a higher frequency of cytotoxic cells (CD8 + T and NK cells), increased cytotoxic potential of NK cells and lower frequency of naive and central memory CD4 + T cells. Further, soluble plasma protein profile divided patients into two distinct clusters with different disease burden at diagnosis. During treatment, BCR-ABL IS% correlated with immunological parameters such as plasma proteins, together with different memory subsets of CD4+ and CD8 + T cells. Interestingly, the proportion and cytotoxic potential of NK cells together with several soluble proteins increased during imatinib treatment. In contrast, no major immunological changes were observed during bosutinib treatment. In conclusion, imatinib and bosutinib were shown to have differential effects on the immune system in this randomized clinical trial. Increased number and function of NK cells were especially observed during imatinib therapy.Peer reviewe

    Concise review: Telomere biology in normal and leukemic hematopoietic stem cells

    No full text
    The measurement of telomere length can give an insight into the replicative history of the cells in question. Much of the observed telomere loss occurs at the stem and progenitor cell level, even though these populations express the enzyme telomerase. Telomerase-transfected hematopoietic stem cells (HSC), although able to maintain telomere length, are still limited in terms of ability to undergo sequential transplantation, and other factors require to be addressed to achieve optimal levels of stem cell expansion. Unchecked telomere loss by HSC, meanwhile, would appear to play a significant role in the pathogenesis of bone marrow failure, as observed in the condition dyskeratosis congenita. This heterogeneous inherited condition appears to exhibit telomerase dysfunction as a common final pathogenic mechanism. Although less well-established for acquired marrow failure syndromes, mutations in key telomerase components have been described. The identification of the leukemic stem cell (LSC), along with the desire to target this population with anti-leukemia therapy, demands that telomerase biology be fully understood in this cell compartment. Future studies using primary selected LSC-rich samples are required. A better understanding of telomerase regulation in this population may allow effective targeting of the telomerase enzyme complex using small molecule inhibitors or additional novel approaches
    corecore