245 research outputs found

    Cardiac lipid content is unresponsive to a physical activity training intervention in type 2 diabetic patients, despite improved ejection fraction

    Get PDF
    Background: Increased cardiac lipid content has been associated with diabetic cardiomyopathy. We recently showed that cardiac lipid content is reduced after 12 weeks of physical activity training in healthy overweight subjects. The beneficial effect of exercise training on cardiovascular risk is well established and the decrease in cardiac lipid content with exercise training in healthy overweight subjects was accompanied by improved ejection fraction. It is yet unclear whether diabetic patients respond similarly to physical activity training and whether a lowered lipid content in the heart is necessary for improvements in cardiac function. Here, we investigated whether exercise training is able to lower cardiac lipid content and improve cardiac function in type 2 diabetic patients. Methods: Eleven overweight-to-obese male patients with type 2 diabetes mellitus (age: 58.4 +/- 0.9 years, BMI: 29.9 +/- 0.01 kg/m(2)) followed a 12-week training program (combination endurance/strength training, three sessions/week). Before and after training, maximal whole body oxygen uptake (VO2max) and insulin sensitivity (by hyperinsulinemic, euglycemic clamp) was determined. Systolic function was determined under resting conditions by CINE-MRI and cardiac lipid content in the septum of the heart by Proton Magnetic Resonance Spectroscopy. Results: VO2max increased (from 27.1 +/- 1.5 to 30.1 +/- 1.6 ml/min/kg, p = 0.001) and insulin sensitivity improved upon training (insulin stimulated glucose disposal (delta Rd of glucose) improved from 5.8 +/- 1.9 to 10.3 +/- 2.0 mu mol/kg/min, p = 0.02. Left-ventricular ejection fraction improved after training (from 50.5 +/- 2.0 to 55.6 +/- 1.5%, p = 0.01) as well as cardiac index and cardiac output. Unexpectedly, cardiac lipid content in the septum remained unchanged (from 0.80 +/- 0.22% to 0.95 +/- 0.21%, p = 0.15). Conclusions: Twelve weeks of progressive endurance/strength training was effective in improving VO(2)max, insulin sensitivity and cardiac function in patients with type 2 diabetes mellitus. However, cardiac lipid content remained unchanged. These data suggest that a decrease in cardiac lipid content in type 2 diabetic patients is not a prerequisite for improvements in cardiac function.Cardiovascular Aspects of Radiolog

    Improving the normalization of complex interventions: measure development based on normalization process theory (NoMAD): study protocol

    Get PDF
    <b>Background</b> Understanding implementation processes is key to ensuring that complex interventions in healthcare are taken up in practice and thus maximize intended benefits for service provision and (ultimately) care to patients. Normalization Process Theory (NPT) provides a framework for understanding how a new intervention becomes part of normal practice. This study aims to develop and validate simple generic tools derived from NPT, to be used to improve the implementation of complex healthcare interventions.<p></p> <b>Objectives</b> The objectives of this study are to: develop a set of NPT-based measures and formatively evaluate their use for identifying implementation problems and monitoring progress; conduct preliminary evaluation of these measures across a range of interventions and contexts, and identify factors that affect this process; explore the utility of these measures for predicting outcomes; and develop an online users’ manual for the measures.<p></p> <b>Methods</b> A combination of qualitative (workshops, item development, user feedback, cognitive interviews) and quantitative (survey) methods will be used to develop NPT measures, and test the utility of the measures in six healthcare intervention settings.<p></p> <b>Discussion</b> The measures developed in the study will be available for use by those involved in planning, implementing, and evaluating complex interventions in healthcare and have the potential to enhance the chances of their implementation, leading to sustained changes in working practices

    Deathly Drool: Evolutionary and Ecological Basis of Septic Bacteria in Komodo Dragon Mouths

    Get PDF
    Komodo dragons, the world's largest lizard, dispatch their large ungulate prey by biting and tearing flesh. If a prey escapes, oral bacteria inoculated into the wound reputedly induce a sepsis that augments later prey capture by the same or other lizards. However, the ecological and evolutionary basis of sepsis in Komodo prey acquisition is controversial. Two models have been proposed. The “bacteria as venom” model postulates that the oral flora directly benefits the lizard in prey capture irrespective of any benefit to the bacteria. The “passive acquisition” model is that the oral flora of lizards reflects the bacteria found in carrion and sick prey, with no relevance to the ability to induce sepsis in subsequent prey. A third model is proposed and analyzed here, the “lizard-lizard epidemic” model. In this model, bacteria are spread indirectly from one lizard mouth to another. Prey escaping an initial attack act as vectors in infecting new lizards. This model requires specific life history characteristics and ways to refute the model based on these characteristics are proposed and tested. Dragon life histories (some details of which are reported here) prove remarkably consistent with the model, especially that multiple, unrelated lizards feed communally on large carcasses and that escaping, wounded prey are ultimately fed on by other lizards. The identities and evolutionary histories of bacteria in the oral flora may yield the most useful additional insights for further testing the epidemic model and can now be obtained with new technologies

    Emergent global patterns of ecosystem structure and function from a mechanistic general ecosystem model

    Get PDF
    Anthropogenic activities are causing widespread degradation of ecosystems worldwide, threatening the ecosystem services upon which all human life depends. Improved understanding of this degradation is urgently needed to improve avoidance and mitigation measures. One tool to assist these efforts is predictive models of ecosystem structure and function that are mechanistic: based on fundamental ecological principles. Here we present the first mechanistic General Ecosystem Model (GEM) of ecosystem structure and function that is both global and applies in all terrestrial and marine environments. Functional forms and parameter values were derived from the theoretical and empirical literature where possible. Simulations of the fate of all organisms with body masses between 10 µg and 150,000 kg (a range of 14 orders of magnitude) across the globe led to emergent properties at individual (e.g., growth rate), community (e.g., biomass turnover rates), ecosystem (e.g., trophic pyramids), and macroecological scales (e.g., global patterns of trophic structure) that are in general agreement with current data and theory. These properties emerged from our encoding of the biology of, and interactions among, individual organisms without any direct constraints on the properties themselves. Our results indicate that ecologists have gathered sufficient information to begin to build realistic, global, and mechanistic models of ecosystems, capable of predicting a diverse range of ecosystem properties and their response to human pressures

    Scattering equations, supergravity integrands, and pure spinors

    Get PDF
    The tree-level S-matrix of type II supergravity can be computed in scattering equation form by correlators in a worldsheet theory analogous to a chiral, infinite tension limit of the pure spinor formalism. By defining a non-minimal version of this theory, we give a prescription for computing correlators on higher genus worldsheets which manifest spacetime supersymmetry. These correlators are conjectured to provide the loop integrands of supergravity scattering amplitudes, supported on the scattering equations. We give nontrivial evidence in support of this conjecture at genus one and two with four external states. Throughout, we find a close correspondence with the pure spinor formalism of superstring theory, particularly regarding regulators and zero-mode counting

    Effectiveness of a smartphone app in increasing physical activity amongst male adults: a randomised controlled trial.

    Get PDF
    BACKGROUND: Smartphones are ideal for promoting physical activity in those with little intrinsic motivation for exercise. This study tested three hypotheses: H1 - receipt of social feedback generates higher step-counts than receipt of no feedback; H2 - receipt of social feedback generates higher step-counts than only receiving feedback on one's own walking; H3 - receipt of feedback on one's own walking generates higher step-counts than no feedback (H3). METHODS: A parallel group randomised controlled trial measured the impact of feedback on steps-counts. Healthy male participants (n = 165) aged 18-40 were given phones pre-installed with an app that recorded steps continuously, without the need for user activation. Participants carried these with them as their main phones for a two-week run-in and six-week trial. Randomisation was to three groups: no feedback (control); personal feedback on step-counts; group feedback comparing step-counts against those taken by others in their group. The primary outcome measure, steps per day, was assessed using longitudinal multilevel regression analysis. Control variables included attitude to physical activity and perceived barriers to physical activity. RESULTS: Fifty-five participants were allocated to each group; 152 completed the study and were included in the analysis: n = 49, no feedback; n = 53, individual feedback; n = 50, individual and social feedback. The study provided support for H1 and H3 but not H2. Receipt of either form of feedback explained 7.7 % of between-subject variability in step-count (F = 6.626, p < 0.0005). Compared to the control, the expected step-count for the individual feedback group was 60 % higher (effect on log step-count = 0.474, 95 % CI = 0.166-0.782) and that for the social feedback group, 69 % higher (effect on log step-count = 0.526, 95 % CI = 0.212-0.840). The difference between the two feedback groups (individual vs social feedback) was not statistically significant. CONCLUSIONS: Always-on smartphone apps that provide step-counts can increase physical activity in young to early-middle-aged men but the provision of social feedback has no apparent incremental impact. This approach may be particularly suitable for inactive people with low levels of physical activity; it should now be tested with this population
    corecore