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1 Introduction

Recently, new expressions for the tree-level S-matrix of (the NS-NS sector of) supergravity

have been found which are remarkably compact [1].1 These formulae give the amplitudes in

terms of an integral over the moduli space of a punctured sphere, with the moduli integrals

localized on the support of the scattering equations, which fix the punctures on the sphere

in terms of the kinematic data. As their structure suggests, these new formulae arise from

the genus zero correlation functions of vertex operators in a chiral, first order worldsheet

theory, which resembles a chiral, infinite tension limit of the RNS formalism for type II

superstring theory [4]. The spectrum of this model contains only the massless states of

type II supergravity, and it produces the tree-level S-matrix of the field theory exactly,

with no α′ or higher-derivative corrections. Indeed, formulating this RNS-like model on a

curved background demonstrates that this worldsheet theory describes the NS-NS sector

of supergravity at the non-linear level, with no higher-derivative corrections and the field

equations emerging as quantum corrections to the scattering equations [5].

Furthermore, on higher genus worldsheets, there is strong evidence that the correla-

tion functions in the model correspond to the loop integrands of supergravity scattering

amplitudes: they are modular invariant and factorize onto rational functions of kinematic

1Similar representations have also been found for the tree-level S-matrices of a variety of other theories,

including Yang-Mills, scalar, Dirac-Born-Infeld, and the non-linear sigma model [2, 3].
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data [6]. At genus one and four points, they have even been shown to reproduce the correct

kinematic prefactor and sum over scalar box integrals in the IR [7]. Much like the genus

zero expressions, these more general amplitudes are localized on the support of the scat-

tering equations at higher genus [6]. Generally, these scattering equations are the minimal

set of conditions needed to set a meromorphic quadratic differential equal to zero globally

on the worldsheet. While type II supergravity is UV divergent in ten-dimensions, these

divergences emerge only after integrating over a set of zero-modes in the worldsheet the-

ory which correspond to loop integrals in field theory; the remaining integrand is modular

invariant and has the expected factorization properties. However, space-time supersymme-

try is manifested only after summing over worldsheet spin structures, just as in the RNS

formalism for superstrings.

In the context of superstring theory, the pure spinor formalism gives a manifestly

super-Poincaré-invariant quantization which avoids the difficulties of dealing with space-

time supersymmetry or light-cone gauge in the RNS and Green-Schwarz formalisms, re-

spectively [8–10]. By now, this pure spinor formalism has been used extensively in the

study of perturbative scattering amplitudes, enabling explicit calculations at higher-genus

which have so far been beyond the reach of other methods (e.g., [11]).

A pure spinor version of the chiral, ‘infinite tension’ worldsheet model has also been

proposed [12], and shown to give the correct tree-level S-matrix of fully supersymmetric

type II supergravity [13]. Given the efficacy of the pure spinor approach to superstring am-

plitudes at higher genus, it seems natural to ask if there is a prescription for the calculation

of loop integrands in supergravity using this formalism.

In this paper, we provide a potential answer to this question by developing the pure

spinor worldsheet theory for supergravity at higher genus. In the context of the pure spinor

superstring, the higher-genus amplitude prescription is best realized by a non-minimal ex-

tension of the worldsheet model (cf., [14, 15]). Consequently, we define a non-minimal ver-

sion of the supergravity worldsheet model in section 2, giving the worldsheet action, BRST

charge, effective b-ghost, and regulator prescriptions. In many aspects, these objects closely

resemble (or are even identical to) their string theoretic counterparts, while also inheriting

much of the structure of pure spinor worldline formalisms for supergravity [16, 17].

Section 3 explores the resulting amplitude prescription at arbitrary genus; we conjec-

ture that the genus g worldsheet correlator gives the integrand of the g-loop supergravity

amplitude; UV divergences arise from integrating over non-compact zero-modes in the

model. The general structure of these correlators, and the associated scattering equations,

is explored. At tree-level, the amplitudes reproduce the ‘minimal’ prescription of [12] which

is known to give the tree-level S-matrix of type II supergravity [13]. At genus one and two,

the four-point function passes several checks in favor of our conjecture, including produc-

ing the correct supersymmetric prefactors and factorizing like a field theory amplitude.

Section 4 concludes.

Appendix A catalogs the various worldsheet currents that appear through the paper

and their OPEs. In appendix B, we note that the worldsheet model studied in this paper

can be obtained from a gauge-fixing procedure, in direct analogy with a recent proposal

for the superstring [18].
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2 Non-minimal formalism

In [12], a worldsheet theory akin to a chiral, infinite tension limit of the pure spinor super-

string was proposed. The vertex operators of this model encode the full type II supergravity

multiplet, and the genus zero correlation functions give the tree-level S-matrix of super-

gravity [13]. To explore the meaning of correlation functions on higher genus worldsheets

in this model, we must first provide a sensible amplitude prescription at generic genus.

In the superstring context, a tentative higher genus prescription can be made using

the ‘minimal’ worldsheet variables; unfortunately, it entails the use of complicated pic-

ture changing operators to define the functional integrals in play [19]. Furthermore, the

prescription for integrating over the worldsheet modular parameters requires an effective

b-antighost which is not manifestly covariant (i.e., the definition depends on the choice of

a patch of pure spinor space) [20]. While explicit calculations at genus one [19, 21] and

two [22, 23] can be made with this formalism, the picture changing operators complicate

the functional integration and break manifest Lorentz covariance at intermediate stages,

although the final amplitudes are covariant (cf., [24]).

A more elegant prescription is provided by adding non-minimal worldsheet variables

to the model and modifying the BRST charge [14, 15]. This eliminates the need for picture

changing operators and allows one to define a covariant effective b-ghost to perform moduli

integrals. Following this analogy with the superstring, we develop a non-minimal version

of the pure spinor formalism for type II supergravity in order to enable higher genus

calculations. In the next section, this non-minimal formalism will be used to provide an

explicit amplitude prescription.

2.1 Review of the minimal theory

We begin with a brief review of the ‘minimal’ pure spinor formalism proposed for super-

gravity in [12]. Throughout, m,n, . . . = 0, . . . , 9 are ten-dimensional space-time indices,

while α, β, . . . = 1, . . . , 16 are spinor indices. The model has a chiral, first order action

given by a holomorphic complexification of the pure spinor superparticle action [16]:

S =
1

2π

∫
Σ
Pm ∂̄X

m + pα ∂̄θ
α + p̃α̃ ∂̄θ̃

α̃ + wα ∂̄λ
α + w̃α̃ ∂̄λ̃

α̃ (2.1)

where Xm and θα, θ̃α̃ are the bosonic and fermionic matter variables, while Pm and pα, p̃α̃
are their conjugate momenta, which have holomorphic worldsheet conformal weight (1, 0).

The variables λα, λ̃α̃ are bosonic spinors which satisfy an algebraic purity condition:

λαγmαβλ
β = 0 = λ̃α̃γm

α̃β̃
λ̃β̃ , (2.2)

while wα, w̃α̃ are their conformal weight (1, 0) conjugate momenta. The pure spinor con-

dition reduces the number of independent components of λ, λ̃ from sixteen to eleven, and

ensures that their conjugates can only ever appear in currents which are invariant under

the induced gauge symmetry:

Nnm =
1

2
(wγnmλ) , J = λ · w , Tλ = −wα ∂λα . (2.3)

The pure spinor constraint also ensures that the theory has vanishing conformal anomaly,

confirming the choice of critical dimension d = 10.

– 3 –
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Since the action (2.1) is free and first-order, the OPEs between the matter variables

are simply

Xm(z)Pn(w) ∼ δmn
z − w

, θα(z) pβ(w) ∼
δαβ

z − w
, (2.4)

and likewise for the tilded variables. The OPEs between the various currents of pure spinor

variables can be computed in the same fashion as the superstring (e.g., by working with

the U(5)-covariant parametrization of the space of pure spinors) [8], and are collected in

appendix A for reference.

The BRST operator for this model corresponds to a holomorphic generalization of the

same operator in the type II worldline formalism. In particular, defining the Green-Schwarz

constraint

dα = pα −
1

2
Pmγ

m
αβθ

β , (2.5)

the charge

Q =

∮
λα dα + λ̃α̃ d̃α̃ , (2.6)

is easily seen to be nilpotent, using the OPEs (2.4) and the pure spinor conditions on λ, λ̃.

Vertex operators are given by non-trivial cohomology classes with respect to this BRST

operator. The fixed vertex operator is equal to that of the superparticle; in a momentum

eigenstate representation:

V = λα λ̃α̃Aα(θ) Ãα̃(θ̃) eik·X , (2.7)

where Aα, Ãα̃ are the standard N = 1 superfields, which can be expanded in terms of vector

and spinor polarizations. The condition {Q,V } = 0 enforces the linearized equations of

motion

k2 = 0 , (γmnpqr)
αβDαAβ = 0 = (γmnpqr)

α̃β̃D̃α̃Ãβ̃ , (2.8)

where the supersymmetric derivative is the usual

Dα =
∂

∂θα
+

1

2
km(γmθ)α . (2.9)

The integrated vertex operators resemble those of the type II pure spinor superstring,

but the chirality of the model leads to the presence of some holomorphic delta functions

to balance the conformal weight:2∫
Σ
δ̄(k · P ) U (2.10)

=

∫
Σ
δ̄(k · P )

(
A · P + dαW

α +
1

2
NmnFmn

)(
Ã · P + d̃α̃W̃

α̃ +
1

2
ÑmnF̃mn

)
eik·X ,

where {Am,Wα,Fmn, . . .} are the standard superfields of N = 1 super-Yang-Mills in ten

dimensions (cf., [25, 26]). This operator also obeys [Q,U ] = 0 on the support of the

delta function.3

2Notice also the absence of terms proportional to ∂θ and ∂θ̃.
3While the delta function is included ‘by hand’ in this formalism to give appropriate conformal weights

and BRST closure of the vertex operator, its presence can be understood via worldsheet gauge-fixing in the

RNS-like version of this model [6].
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The vertex operators (2.7), (2.10) give the full spectrum of type II supergravity in

ten dimensions. Individual fields can be picked out by expanding the various superfields in

powers of θ (or θ̃), and isolating those components proportional to the desired polarizations.

The genus zero worldsheet correlation function prescription given in [12] mimics the

prescription for the superstring:

M(0)
n =

〈
3∏
i=1

V (zi)

n∏
j=4

∫
Σ
δ̄(ki · P (zi)) U(zi)

〉
, (2.11)

with the usual zero-mode normalization for θ, θ̃, λ, λ̃ inherited from the superstring (i.e.,

〈λ3θ5〉 = 1) [8]. By restricting the vertex operators to the NS-NS sector, it is straightfor-

ward to see that this prescription reproduces the worldsheet correlators of the RNS-like

model in [4]. These in turn are equal to the scattering equation representations for the

tree-level S-matrix of gravitons, B-fields, and dilatons given by Cachazo, He, and Yuan [1].

In the case of general supersymmetric external states, performing explicit amplitude

calculations for an arbitrary number of external particles is difficult. However, by utiliz-

ing genus zero results from the pure spinor superstring [27–29] and KLT orthogonality, it

can nevertheless be shown that the prescription (2.11) does reproduce the full tree-level

S-matrix of type II supergravity, in a representation that is supported on the scattering

equations [13]. Note that the distinction between type IIA and IIB supergravity is built into

the identification of the tilded spinor indices: for IIA tilded indices denote spinors of the op-

posite chirality as un-tilded indices, while for IIB they denote spinors of the same chirality.

2.2 Non-minimal worldsheet action and BRST charge

Following the analogy with superstring theory, we define the non-minimal version of the

model (2.1) by the inclusion of two sets of new variables on the worldsheet: bosonic spinors

λ̄α,
˜̄λα̃ and fermionic spinors rα, r̃α̃, along with their respective conjugate fields w̄α, ˜̄wα̃ and

sα, s̃α̃. These variables obey the constraints

λ̄αγ
αβ
m λ̄β = 0 = ˜̄λα̃γ

α̃β̃
m

˜̄λβ̃ , λ̄αγ
αβ
m rβ = 0 = ˜̄λα̃γ

α̃β̃
m r̃β̃ . (2.12)

This means that λ̄, ˜̄λ are pure spinors of opposite chirality to λ, λ̃; if the space-time signature

is taken to be Euclidean, then they can be interpreted as complex conjugates of the original

variables. The constraints also restrict the fermions r, r̃ to having eleven independent

components.

The modified action is now

S =
1

2π

∫
Σ
Pm ∂̄X

m + pα ∂̄θ
α + wα ∂̄λ

α + w̄α ∂̄λ̄α + sα ∂̄rα + tilded . (2.13)

The constraints ensure that the w̄λ̄-system contributes +22 units of central charge, which

is balanced by the −22 contributions from the rs-system. Hence, this non-minimal world-

sheet action has vanishing conformal anomaly for space-time dimension d = 10, just like

the minimal version. The action for the non-minimal fields is free, but the various con-

straints require a careful treatment of their OPEs. In particular, the variables of conformal

– 5 –
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weight (1, 0) can only appear in currents that are invariant under the gauge transforma-

tions induced by the pure spinor constraints. These are precisely the same as those used

in the superstring [14]:

N̄mn =
1

2

(
w̄γmnλ̄+ sγmnr

)
, J̄ = w̄ · λ̄+ s · r , Tλ̄,r = −w̄α∂λ̄α − sα∂rα ,

Smn =
1

2
(sγmnλ̄) , S = s · λ̄ . (2.14)

The currents for the tilded variables are identical, and have the same conformal weight

as the un-tilded currents. The various OPEs between these currents are collected in

appendix A for reference.

We define the non-minimal BRST operator to be

Q =

∮
λαdα + λ̃α̃d̃α̃ + w̄αrα + ˜̄wα̃r̃α̃ , (2.15)

which is nilpotent due to the pure spinor constraint. Since the ‘quartet’ of non-minimal

variables do not affect Q2 = 0, standard arguments [30, 31] ensure that they have no impact

on the BRST cohomology. In particular, external supergravity states can be represented

in the non-minimal worldsheet model by the same fixed (2.7) and integrated (2.10) vertex

operators used in the minimal model.

Note that just as the minimal model and BRST charge (2.1), (2.6) resemble a holomor-

phic complexification of the pure spinor superparticle, the non-minimal action and BRST

charge (2.13), (2.15) are a holomorphic complexification of the non-minimal superparticle

developed in [17]. This worldline formalism has been used to check the UV divergence

structure of maximally supersymmetric supergravity loop amplitudes [32], suggesting that

the worldsheet model should be related to field theory beyond tree-level.

2.3 Effective b-ghost

In the RNS formalism for superstring theory, the prescription for integrating over world-

sheet moduli at arbitrary genus is provided by the functional integral over the conformal

bc-ghost system. In the RNS-like worldsheet formulation of supergravity, there are two con-

formal ghost systems: one corresponds to gauging the worldsheet stress tensor as in string

theory, while the other corresponds to gauging the Hamiltonian constraint P 2 = 0 [4]. This

latter constraint ensures that the resulting worldsheet correlation functions are supported

on the scattering equations — indeed, in the presence of vertex operator insertions, P 2 = 0

is equivalent to the scattering equations at any genus [6].

Of course, there is no bc-ghost system in either the pure spinor superstring or the

worldsheet model discussed here. In the superstring, a prescription for integrating over

moduli is nonetheless available by defining a composite operator b ∈ ΠΩ0(Σ,K2
Σ), called

an effective b-ghost, which obeys {Q, b} = T . In our model, it is also possible to construct

an effective b-ghost, but instead of being related to the stress tensor, this composite operator

obeys {Q, b} = P 2. The effective b-ghost of the pure spinor superparticle is also related to

the Hamiltonian constraint (albeit a real function on the worldline rather than a quadratic

differential on the worldsheet), and ensures the gauge invariance of the propagator [17].

– 6 –
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Viewing our formalism as a complexification of the worldline theory, this choice of ghost

will likewise ensure gauge invariance, as well as modular invariance and the appropriate

scattering equations at arbitrary genus.

While the lack of an explicit relationship with the stress tensor is slightly myste-

rious, it seems to be related to the fact that both the Virasoro and Hamiltonian con-

straints are implied by a single twistor-like constraint in conjunction with a λα constraint

(see appendix B). In the superstring, the twistor-like constraint implies the Virasoro con-

straint only [18]. Of course, the ultimate test of our choice will be the resulting amplitude

prescription.

The construction of the effective b-ghost proceeds in direct analogy to the superstring

calculation (cf., [14, 33]). We begin by looking for an operator Gα ∈ ΠΩ0(Σ,K2
Σ) which

obeys {Q,Gα} = λαP 2. Using the various OPEs between currents and fields in our world-

sheet model, it is easy to see that

Gα = −Pm (γmd)α , (2.16)

has the desired property. Now, since{
Q,λαGβ

}
= λαλβ P 2 , (2.17)

the operator (λαGβ − λ((αGβ))) is BRST-closed, where ((· · · )) denotes the symmetric,

gamma-matrix-traceless part. As the Q-cohomology at ghost number one with non-zero

conformal weight is trivial, there must exist some Hαβ of conformal weight (2, 0) such that[
Q,Hαβ −H((αβ))

]
= λαGβ − λ((αGβ)) . (2.18)

A calculation identical to the analogous step in the superstring reveals that

Hαβ =
(γmnp)αβ

96
[(dγmnpd) + 24NmnPp] . (2.19)

Cohomological arguments allow for the continued construction of a chain of operators,

each related to the previous operator in the chain by the action of Q, until the chain

terminates by virtue of the pure spinor constraint. These operators can then be arranged

into a single composite operator by making use of the non-minimal pure spinor variables:

b = −(λ̄γmd)Pm
λ̄ · λ

− (λ̄γmnpr)

96(λ̄ · λ)2
[(dγmnpd) + 24NmnPp]

+
(rγmnpr)(λ̄γ

md)

8(λ̄ · λ)3
Nnp − (rγmnpr)(λ̄γ

pqrr)

64(λ̄ · λ)4
NmnNqr , (2.20)

which obeys {Q, b} = P 2. The effective b-ghost for the tilded worldsheet fields takes an

identical form. This composite operator is identical to the holomorphic complexification

of the b-ghost appearing in the non-minimal pure spinor superparticle [17, 32], up to an

overall constant factor.
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2.4 Zero modes, functional integrals, and regulators

In any path integral calculation, regardless of the details of the amplitude prescription,

zero modes of the various worldsheet fields must be integrated over. Remarkably, the

only variable in the model (2.13) which does not appear in the pure spinor superstring is

Pm ∈ Ω0(Σ,KΣ); all other worldsheet fields appear as left-movers in the superstring. Hence,

the subtleties associated with their functional integrations can be dealt with in exactly the

same manner as they are handled in the superstring context. Crucially, the tilded sector

of the worldsheet model is just a second (left-moving) copy of the un-tilded sector.

The conformal weight zero matter fields θα, θ̃α̃ have the usual zero mode integration

measures, which will be denoted by d16θ, d16θ̃ at arbitrary worldsheet genus. Likewise,

at any genus the bosonic and fermionic pure spinor variables λα, λ̄α, rα and their tilded

counterparts have eleven zero modes. Since these are identical to the pure spinor variables

of the superstring, we can use the same integration measures that were developed in that

context for both the tilded and un-tilded variables. The precise definition of the zero mode

measures can be found in [14, 19, 34]; we will simply denote them as [dλ], [dλ̄], [dr], etc.

All of the conjugate fields in this model are left-moving, with conformal weight (1, 0).

So on a genus g worldsheet, they acquire g zero modes which must be integrated over. Let

f be any such worldsheet field; at genus g we expand it as

f → f̂ +

g∑
I=1

f Iz.m. ωI , (2.21)

where f̂ is the quantum (non-zero mode) field, {ωI} form a basis of H0(Σ,KΣ), and f Iz.m.
are the functions (bosonic or fermionic) which parametrize the zero modes. Choosing a

canonical basis {A1, . . . , Ag, B1 . . . , Bg} for H1(Σ,Z) ∼= Z2g and the {ωI} such that∫
AI

ωJ = δIJ ,

∫
BI

ωJ = ΩIJ , (2.22)

where ΩIJ is the period matrix of Σ, the zero mode of a field can be extracted unambigu-

ously as

f Iz.m. =

∫
AI

f .

The various conformal weight one fields which have zero mode structure of this form are

pα, wα, w̄
α, sα and their tilded counterparts (we leave the field Pm to be treated later).

Once again, their zero mode integrals can be performed in an identical manner to the

left-movers of the superstring. Hence, we trade the integral over pIz.m. α for an integral over

dIz.m. α, and denote the various integral measures by

[dd] =

g∏
I=1

[
d16dIz.m.

]
, [dw] =

g∏
I=1

[
d11wIz.m.

]
, . . . . (2.23)

The technical definitions of these measures can be found throughout the literature on the

pure spinor formalism [14, 19, 34].
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Just as in the pure spinor superstring, there are two important subtleties associated

with these zero mode integrations. Firstly, there are non-compact integrals which can

introduce potential divergences. If the non-minimal formalism is to be equivalent to the

minimal prescription at genus zero, it cannot have new divergences, so these integrals

require regularization. But since the pure spinor variables of our worldsheet model are

identical to the left-moving pure spinor variables of the superstring, we can use the same

regulator. In particular, taking N = exp({Q,χ}) will not affect worldsheet correlation

functions of BRST-closed vertex operators, so on a genus g worldsheet we set [14]

χ = −λ̄ · θ −
g∑
I=1

(
N I

z.m.mn S
mnI
z.m. + JIz.m. S

I
z.m.

)
. (2.24)

The exponential suppression then provides a regulator for the large λ, λ̄ region.

The second subtlety arises from the zero mode integration near the tip of the pure

spinor cone, where λ̄ ·λ→ 0. It can be shown that the zero mode measures are convergent

in this region [14, 34]:

[dλ] [dλ̄] [dr] ∼ λ8λ̄11 .

However, the effective b-ghost (2.20) contains a term which diverges like (λ̄ · λ)−3 near the

tip of the pure spinor cone. We expect to insert 3g − 3 such b-ghosts for any correlator on

a genus g ≥ 2 worldsheet, so potential divergences can arise for g > 2.

Once more, we can look to the superstring context for a resolution for this problem. In

that setting, a solution has been proposed in the form of a BRST-invariant regularization of

the effective b-ghost. While the functional form of (2.20) differs slightly from the effective b-

ghost of the superstring, its dependence on the pure spinor variables is the same, so we can

adopt the pure spinor regularization for the b-ghost given by Berkovits and Nekrasov [15].

The precise details of this regularization will not be needed for our considerations here,

since we already know that it is designed to resolve the issue of divergences in the functional

integration near the tip of the pure spinor cone.

The regularized b-ghost will be denoted by bε; accounts of its use in several calculations

can be found in [15, 35, 36]. We note that this prescription has yet to be used in a full,

non-trivial superstring amplitude computation (the divergences do not arise for the four-

point function until g ≥ 4 due to fermionic zero mode saturation). However, any potential

issues which could arise from practical computations in the superstring will be identical in

our worldsheet model.

3 Amplitudes at higher genus

We are now in a position to define the amplitude prescription on a worldsheet of generic

genus. We conjecture that the resulting amplitudes on a genus g worldsheet contain the

g-loop integrand of type II supergravity, with UV divergences emerging only after inte-

grating over a non-compact space of zero modes corresponding to loop momenta. We can

make many general observations about the structure of these amplitudes with an arbitrary
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number of external points, and provide concrete, non-trivial evidence in favor of the con-

jecture at four-points. In particular, for g = 1, 2 the four-point function has IR behavior

consistent with supergravity and gives the correct supersymmetric prefactor.

3.1 Amplitude prescription

Given the similarities between the model (2.13) and the superstring, we follow [14] in giving

the higher genus amplitude prescription. In particular, on a genus g ≥ 2 worldsheet we

define the n-point amplitude by the worldsheet correlation function:

M(g)
n = lim

ε→0

∫ 3g−3∏
a=1

dτa

〈
NÑ

3g−3∏
j=1

δ̄
(
P 2(zj)

)
(bε|µ)j(b̃ε|µ̃)j

n∏
i=1

∫
Σ
δ̄(ki · P (zi)) U(zi)

〉
. (3.1)

The complex parameters {τa} are the complex structure moduli of the genus g Riemann

surface Σ integrated over the fundamental domain of the modular group;4 N , Ñ are the

regulators defined by (2.24); b, b̃ are the effective b-ghosts of (2.20); ε is the regulation pa-

rameter of [15]; and U(z) is the integrated vertex operator (2.10). The Beltrami differentials

µj form a basis of H0,1(Σ, TΣ), with

(b|µ) :=
1

2π

∫
Σ
µyb , (3.2)

and likewise for the tilded variables. The brackets 〈· · ·〉 indicate the correlator in the

worldsheet CFT; that is, integrating over zero modes and eliminating non-zero modes

via worldsheet OPEs. Note that for g = 2, the regulator ε can be dropped from this

prescription.

As usual, the amplitude prescription for a genus one worldsheet should include a single

fixed vertex operator in accordance with the constant translation symmetry on the torus

or ghost number anomaly. Thus, the g = 1 amplitudes are defined by

M(1)
n =

∫
dτ

〈
NÑ δ̄

(
P 2(z1)

)
(b|µ)(b̃|µ̃)V (z1)

n∏
i=2

∫
Σ
δ̄ (ki · P (zi)) U(zi)

〉
. (3.3)

On the Riemann sphere, we have three fixed vertex operators in accordance with SL(2,C)

invariance, leading to

M(0)
n =

〈
NÑ

3∏
i=1

V (zi)

n∏
j=4

∫
Σ
δ̄(ki · P (zi)) U(zi)

〉
. (3.4)

Despite the apparent complexity of the general amplitude prescription, there are nev-

ertheless some important universal properties which can be easily observed. Note that with

the momentum eigenstates of (2.7), (2.10), the worldsheet field Xm enters the correlator

4This is consistent with modular invariance. As usual for the pure spinor formalism, modular invariance

is somewhat obscure at the level of the correlation function and only becomes manifest in the final amplitude.

Our explicit four-point calculations confirm this.
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only via the plane wave exponentials eik·X . Following the strategy adopted for the RNS-

like model [4], the X path integral can be performed explicitly, enforcing ten-dimensional

momentum conservation and the equation of motion

∂̄ Pm(z) = 2πi dz ∧ dz̄

n∑
i=1

ki mδ
2(z − zi) . (3.5)

This indicates that Pm is a meromorphic differential on Σ, with singularities only at the

vertex operator insertions {zi} ⊂ Σ.

On a genus g Riemann surface, the kernel of ∂̄ : O → KΣ, denoted by S̃g(z, w|Ω),

serves as the propagator for the PX-system. This is a (1, 0)-form with respect to z and a

scalar with respect to w, and can be defined as

S̃g(z, w|Ω) = ∂z Gg(z, w|Ω) , (3.6)

Gg(z, w|Ω) = − ln |Eg(z, w)|2 + 2π

g∑
I,J=1

(Im Ω)−1
IJ

(
Im

∫ w

z
ωI

)(
Im

∫ w

z
ωJ

)
, (3.7)

where Eg(z, w) is the prime form (cf., [37, 38]). In the limit where z → w, this propagator

has the expected simple pole

lim
z→w

S̃g(z, w|Ω) ∼ dz

z − w
, (3.8)

in appropriately chosen inhomogeneous coordinates on Σ.

Using (3.7), we can integrate (3.5) on the worldsheet, finding

Pm(z) =

g∑
I=1

`Im ωI(z) +

n∑
i=1

ki m S̃g(z, zi|Ω) . (3.9)

Combined with the on-shellness of the {ki}, this indicates that P 2 is a meromorphic

quadratic differential with only simple poles at the vertex operator insertion points:

P 2(z) =

g∑
I,J=1

`I · `JωI(z)ωJ(z) + 2

g∑
I=1

n∑
i=1

`I · ki ωI(z)S̃g(z, zi|Ω)

+
∑
i 6=j

ki · kj S̃g(z, zi|Ω)S̃g(z, zj |Ω) . (3.10)

The vectors {`Im} are the zero modes of Pm, associated with homogeneous solutions of (3.5),

whereas the residue of P 2 at zi is easily seen to be

Resz=ziP
2(z) =

g∑
I=1

ki · `I ωI(zi) +
∑
j 6=i

ki · kj S̃g(zi, zj |Ω) . (3.11)

In light of (3.10), the delta functions appearing in the correlators (3.1), (3.3), (3.4)

have a natural interpretation: they enforce the condition that P 2 = 0 globally on the

worldsheet Σ. As noted in [6], this is the geometric content of the scattering equations at
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generic genus. Indeed the amplitude prescription ensures that there are 3g − 3 + n delta

function constraints for g ≥ 2: n of them to set the residues (3.11) to zero, and 3g − 3

to kill the remaining globally-defined moduli. At g = 0, 1 this counting is modified in the

obvious way in accordance with h0(Σ,K2
Σ(z1 + · · ·+ zn)).

Hence, it is clear that the amplitude prescription will give the expected scattering

equations at a given genus, along with a non-compact zero-mode integral over the {`Im}.
These scattering equations completely fix all the moduli integrals (over {τa} and {zi}) in

terms of the kinematics (the external and loop momenta {ki, `I}). We therefore deduce

that a general amplitude will take the form:

M(g)
n = δ10

(
n∑
i=1

kmi

)∫ g∏
I=1

d10`I
3g−3∏
a=1

dτaδ̄
(
P 2(za)

) n∏
j=1

δ̄ (kj · P (zj))
〈
NÑ · · ·

〉

:= δ10

(
n∑
i=1

kmi

)∫ g∏
I=1

d10`I M(g)
n , (3.12)

where the integrand M
(g)
n represents the full correlator, localized on the support of the

scattering equations with all OPEs and zero mode integrations performed, except for the

loop integrals d10`.

Our central conjecture is that the quantity M
(g)
n is equal to the g-loop integrand of

type II supergravity, before any loop integrals have been performed. By the ‘integrand’,

we mean the sum over all g-loop Feynman diagrams in the field theory without performing

the loop integrations. Although type II supergravity is UV divergent in ten-dimensions,

we expect these divergences to emerge only after performing the d10` integrals, so the

integrand M
(g)
n itself is a perfectly well-defined object.

Of course, it is far from obvious that the worldsheet correlators will have even the

most rudimentary properties of field theory amplitudes, such as being rational functions

of the kinematic data, producing the correct kinematic prefactors, or factorizing correctly.

However, we will show that in the special case of the four-point amplitudes, the correlators

do indeed pass several non-trivial tests in favor of the conjecture. In particular, we recover

the correct kinematic prefactor and IR behavior consistent with supergravity amplitudes.

These tests are enabled by a combination of similar results for the higher-genus amplitudes

of the RNS-like formalism [6, 7], as well as the similarities between this worldsheet theory

and the non-minimal formalism of the pure spinor superstring, where extensive calculations

have been performed explicitly.

At genus zero, there are no zero modes of Pm to integrate over and the conjecture

reduces to the claim that M(0)
n gives the full tree-level S-matrix of type II supergravity.

On the genus zero worldsheet, the regulator is simply

N = e−λ·λ̄−r·θ , (3.13)

since none of the conformal weight (1, 0)-fields have any zero modes. Performing the X

path integral fixes Pm via (3.9) to be

Pm(z) = dz

n∑
i=1

ki m
z − zi

, (3.14)
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so all the remaining fields in the correlator (3.4) are the same as left-moving variables of the

superstring. After contracting all the conformal weight (1, 0) fields via their OPEs, the same

strategy as the superstring [14] reveals that after integrating out the non-minimal variables,

M(0)
n =

∫
[dλ][dλ̃] d16θ d16θ̃

n∏
i=4

δ̄ (ki · P (zi))λ
αλβλγ λ̃α̃λ̃β̃λ̃γ̃fαα̃ββ̃γγ̃

(
θ, θ̃
)
, (3.15)

where f is a function of the kinematic data, the insertion points, and takes values in

⊗ni=4K
2
Σ i.

It is easy to see that this is equivalent to the minimal prescription (2.11) given by

Berkovits [12], and in turn proven to give the full tree-level S-matrix of supergravity [13]. So

at genus zero, the non-minimal formalism reduces to the minimal formalism in exactly the

same way as for superstring theory, and gives the desired classical scattering amplitudes of

type II supergravity.5 We now turn to some explicit calculations of the four-point function

to provide evidence for the conjecture beyond tree-level.

3.2 Four-point function: genus one

On a genus one surface the fields of conformal weight (1, 0) acquire zero modes. In particular

the fermionic fields sα and s̃α̃ have 11 zero modes each, which must be soaked up by operator

insertions in the path-integral to give a non-vanishing result. The only operators which

can provide these zero modes are the regulators N and Ñ , given at genus one by [14]

N = exp
(
−λ · λ̄− r · θ − wz.m. · w̄z.m. + sz.m. · dz.m.

)
, (3.16)

where fz.m. denotes the zero mode of the conformal weight (1, 0) field f . The 11 zero modes

of sα are thus accompanied by 11 zero modes of the dα field, the latter of which has 16

unconstrained components. So there are 5 remaining zero modes of dα left to be soaked

up by contributions coming either from vertex operators or the b-ghost insertion in (3.3).

Fixed vertex operators cannot contribute d zero modes, so they must come either from

integrated vertex operators, which can contribute at most one d zero mode each, or from the

effective b-ghost, which can contribute at most 2 zero modes. The counting is exactly the

same for the tilded variables. Using this zero mode counting, it is clear that the first non-

vanishing amplitude at genus one is the four-point amplitude;M(1)
n<4 = 0 since the fermionic

zero mode integrals cannot be saturated. This vanishing is a consequence of spacetime

supersymmetry, which is manifest in the pure spinor approach. In the RNS-like model, the

vanishing of the lower point amplitudes occurs only after summing over spin structures [6].

At four points there is only one way to pick terms from the vertex operators and b-ghost

in order to saturate the d zero mode path integral, just as in superstring theory [19, 21, 40].

Each of the three integrated vertex operators (2.10) contributes a zero mode from the term

dαW
α and the b-ghost (2.20) contributes

(b|µ) ∝ (λ̄γmnpr)(dz.m.γ
mnpdz.m.)

(λ̄ · λ)2
. (3.17)

5In principle, one could define a higher genus prescription for the minimal model analogous to the

superstring. While avoiding this for the reasons mentioned above, we expect an abstract equivalence

between the two formalisms to hold beyond tree-level, again in analogy with superstring theory [39].
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After performing the d zero mode integral we are left with∫
d16θ

∫
[dλ][dλ̄][dr]

(λ̄γmnpD)

(λ̄ · λ)2
(λ ·A1)(λγmW2)(λγnW3)(λγpW4) e−λ·λ̄−r·θ . (3.18)

This has been shown [24, 40] to be proportional to the pure spinor superspace expression

K = 〈(λ ·A1)(λγmW2)(λγnW3)Fmn4 〉 , (3.19)

where these angle brackets stand for the pure spinor and theta zero mode integrations.

The calculation in the tilded variables is identical. Thus, the amplitude can be written as

M(1)
4 ∝ K K̃

∫
d10`

∫
dτ (dz0)2 δ̄

(
P 2(z0)

) 4∏
i=2

δ̄(ki · P (zi)) (dzi)
2 , (3.20)

omitting the overall momentum conserving delta function.

The amplitude (3.20) is equal to the amplitude given by the RNS-like formalism af-

ter summing over spin structures [6], with KK̃ the correct supersymmetric prefactor for

supergravity. As expected, the integral over the moduli space of a four-punctured torus

is completely localized by the scattering equations.6 It is straightforward to see that this

integrand factorizes with a simple pole in the τ → i∞ limit onto a rational function of the

kinematics, and in the IR region (where three adjacent propagators can be thought of as

going on-shell) it reproduces the field theoretic sum over scalar box integrals [7]. Hence,

the four-point function factorizes as a field theory amplitude, and is explicitly equal to the

supergravity amplitude deep in the IR.

3.3 Four-point function: genus two

By now it should be clear that computations involving only zero mode counting in this

model will be almost the same as in the usual pure spinor superstring. In particular, the

computation of the genus two four-point amplitude can be carried out in much the same

way as in the pure spinor superstring. In this case there are now 22 zero modes of the field

s; these, again, can only come from the regulators and thus are accompanied by 22 zero

modes of the d field. At genus two the field d has 32 zero modes, so 10 other zero modes

must be provided by the integrated vertex operators and b-ghosts. Each integrated vertex

operator can contribute at most one zero mode, so we need to take two zero modes from

each b-ghost.

This completely fixes the terms we take from each operator, which are the same as in

the one-loop case. After doing the path integral over the zero modes of d, s, w, and w̄,

the remaining superspace expression can be written as [22, 24, 40, 41]∫
d16θ

∫
[dλ][dλ̄][dr]

(λγmnpqrλ)

(λ̄ · λ)3
FmnFpqFrs(λγsW ) e−λ·λ̄−r·θ , (3.21)

where we suppress various numerical factors and the distribution of particle labels on the

superfields. Upon summing over permutations of particle labels, this superspace expression

6The integrand is seen to be modular invariant by adopting the prescription of [6] to demand that Pm

transforms invariantly.
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Figure 1. The genus two worldsheet at the boundary of the moduli space.

vanishes unless it is dressed with holomorphic differentials arising from a combination of

the moduli integrals and the b-ghost insertions. The result can be identified with the

kinematic prefactor of supergravity [22, 23] by comparison with the computation in the

RNS formalism [42, 43], or via BRST cohomology arguments [44]. The counting and

calculation for the tilded variables follows identically.

The BRST cohomology techniques of [44] relate the two-loop kinematic prefactor to

the one-loop prefactor (3.19), see also [41]. Applying this relationship leaves us with the

expression

M(2)
4 ∝ K K̃

∫
d10`1 d10`2

∫
d3Ω Y2

3∏
j=1

δ̄
(
P 2(xj)

)
(dxj)

2
4∏
i=1

δ̄ (ki · P (zi)) , (3.22)

where d3Ω stands for the integrals over the complex structure moduli of the genus two

Riemann surface and Y is the quadri-holomorphic form [43]

Y = (t− u)∆(1, 2)∆(3, 4) + (s− t)∆(1, 3)∆(4, 2) + (u− s)∆(1, 4)∆(2, 3) . (3.23)

Here, {s, t, u} are the standard Mandelstam parameters (e.g., s = 2k1 · k2) and

∆(z, w) = ω1(z)ω2(w)− ω1(w)ω2(z)

for ωI the abelian differentials on the genus two worldsheet.

Our conjecture is that the integrand of (3.22) is a representation for the two-loop

integrand of type IIA/B supergravity. In particular, the massive modes that usually run

through the loops of string theoretic amplitudes at genus two should be absent. There is an

easy test that can be done in this amplitude to show that no massive modes are propagating.

We can look at the boundary of the moduli space where the genus two surface degenerates

into two tori glued at a nodal point, see figure 1. In the superstring the only poles at this

boundary come from the propagation of massive modes through the node [45]. In terms of

the field theory integrand, this boundary corresponds to a non-existent cut of a double box.

Therefore if (3.22) represents a field theory amplitude, it must vanish at this separating

boundary.

Using the period matrix

Ω =

(
τ11 τ12

τ12 τ22

)
to parametrize the genus two surface, the separating boundary divisor of the moduli space

sits at τ12 → 0; τ11, τ22 are the modular parameters of the two resulting tori. Near this
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Σ1
At Σ2

Figure 2. The degenerating worldsheet modeled on two tori Σ1,Σ2 connected by the annulus At.

Solid dots denote scattering equations of the form k · P , while crosses denote scattering equations

of the form P 2.

boundary we let the external states {1, 2} move to one of the tori, call it Σ1 with modular

parameter τ11, while states {3, 4}move to the other torus, call it Σ2 with modular parameter

τ22. With this choice, the quadri-holomorphic form (3.23) becomes simply [45]

Y τ12→0−−−−→ −s = −2k1 · k2 , (3.24)

with no pole arising from the measure factors. We expect that at this boundary, the

scattering equations in (3.22) enforce the momentum flowing through the node to be on-

shell (i.e., s = 0) and thus the amplitude vanishes.

At this stage, it is convenient to make use of an explicit parametrization of the moduli

space near this boundary, which has been deployed often in the study of factorization

in string theory (the so-called ‘plumbing fixture’ cf., [37, 38, 46, 47]). On the two tori

Σ1,Σ2 pick local coordinates zI around one point on each surface pI ∈ ΣI such that

pI = {zI = 0}. Remove an open neighborhood around these points UI = {|zI | < |t|1/2}
where t is a coordinate on the unit disk D = {t ∈ C| |t| < 1} (not to be confused with

the Mandelstam variable, which we no longer need). Now glue them together using the

annulus At = {w ∈ C| |t|1/2 < |w| < |t|−1/2} via

w =


t1/2

z1
if |t|1/2 < |w| < 1

t−1/2 z2 if 1 < |w| < |t|1/2
(3.25)

This gives a family of genus two Riemann surfaces fibered over the unit disk which can

be seen as the union of three distinct components, (Σ1 \U1)∪At ∪ (Σ2 \U2). The singular

fiber over t = 0 corresponds to the boundary we are interested in, and one can show that

t ∝ τ12. We now distribute the scattering equations among these components. The four

scattering equations of the form ki·P (zi) accompany the punctures, so the i = 1, 2 equations

go to Σ1 \U1, while i = 3, 4 go to Σ2 \U2. There are also three P 2(x) scattering equations,

corresponding to each of the three moduli of the genus two surface. The natural choice is

to place one of these equations on each component of the family of surfaces (see figure 2).

The form of these equations as we approach the boundary is dictated by the field

Pm(z), whose behavior under the degeneration depends on which component it is be-

ing evaluated at. Using standard degeneration formulas for the abelian differentials and
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propagators, it is easy to see what happens to P . The abelian differentials behave as [37]

ωI(z) =

{
$I(z) +O(t) if z ∈ ΣI

O(t) otherwise
, I = 1, 2 , (3.26)

where $I are the global holomorphic differentials on the respective tori. The behavior of

the propagator S̃2(z, w|Ω) can be deduced from that of the prime form

E2(z, w|Ω) =


−E1(z, p1|τ11)wt−1/4 if z ∈ Σ1, w ∈ At
E1(z, p2|τ22)t−1/4 if z ∈ Σ2, w ∈ At
E1(z, p1|τ11)E1(p2, w|τ22)t−1/2 if z ∈ Σ1, w ∈ Σ2

. (3.27)

Using (3.26)–(3.27) with (3.9) it is straightforward to see that as t→ 0, the scattering

equations on each component ΣI \UI go to the one-loop scattering equations with an extra

puncture at pI of momentum ±(k1 + k2). This is a consequence of

lim
t→0

Pm(z)|Σ1 = `1 m$1(z) +
∑
i=1,2

ki mS̃1(z, zi|τ11)− (k1 + k2)mS̃1(z, p1|τ11) ,

lim
t→0

Pm(z)|Σ2 = `2 m$2(z) +
∑
i=3,4

ki mS̃1(z, zi|τ22) + (k1 + k2)mS̃1(z, p2|τ22) .

The remaining scattering equation on the annulus enforces the momentum flowing through

the node to be on-shell, since

Pm(w) = (k1 + k2)m
dw

w
+O(t) if w ∈ At , (3.28)

where dw
w is the holomorphic differential on the annulus.

Therefore P 2(w) ∝ s + O(t) = 0, enforcing k1 · k2 = 0 in the t → 0 limit. Since

the amplitude in this limit is multiplied by a factor of s from (3.24), it vanishes on top

of the scattering equations. This gives further evidence that the model describes only

field theory amplitudes in type IIA/B supergravity. For more general external kinematics,

it should also be possible to extract scalar integrals from (3.22) by probing the deep IR

behavior of the integrand (i.e., considering multiple adjacent propagators going on-shell)

and using the techniques of [7]. The squared Mandelstam invariants, which accompany

each planar or non-planar double box in four-point two-loop supergravity amplitudes [48],

are supplied by Y2.

Note that although we confined our attention to four-point amplitudes in this section,

the factorization arguments for the scattering equations generalize in the obvious way to n-

points and arbitrary genus. Combined with the non-separating degenerations (i.e., pinching

a cycle of the worldsheet non-homologous to zero) and the separating degenerations that

pinch off a sphere from the worldsheet, both of which were studied in [6] making use of

methods from [49], this encompasses all possible degenerations of the scattering equations

near a boundary of the moduli space for any genus and any number of external states.
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4 Conclusions

In this paper, we showed how to define a non-minimal formalism for the worldsheet theory

which appears to describe the S-matrix of type II supergravity in ten dimensions. Following

the analogy with superstring theory, we arrived at an amplitude prescription on arbitrary

genus worldsheets, which we conjectured to provide the loop integrands of supergravity,

with UV divergences emerging from the non-compact loop integrations
∏
I d10`I . By per-

forming some explicit four-point calculations at genus one and two, we found non-trivial

evidence in favor of this conjecture: the worldsheet correlators produce the kinematic pref-

actors of the superstring and have factorization behavior in accordance with field theory

amplitudes.

Besides the obvious question as to whether the conjecture can be proven (in the pure

spinor context or the RNS setting of [6]), this work also hints towards intriguing rela-

tionships with other results in the literature. While the worldsheet model presented here

or in [12] can be thought of heuristically as an ‘infinite tension limit’ of the superstring,

it is more precisely related to a holomorphic complexification of the pure spinor world-

line formalism [16]. At tree-level and for the minimal formalism, this is quite clear: the

fixed vertex operators are identical, and integrated vertex operators are complexified at

the expense of a delta function factor which leads to the scattering equations.

The non-minimal formalism is likewise related to a non-minimal worldline action pre-

sented in [17, 32]. However, the similarities extend beyond the worldsheet/line actions:

the loop amplitude prescription for the worldsheet is easily seen to be a sort of complexifi-

cation of the rules developed for the worldline. The efficacy of the worldline formalism in

studying the UV divergences of (dimensionally-reduced) maximal supergravity would seem

to provide additional — admittedly heuristic — evidence in favor of our conjecture for the

worldsheet model. Finding a more concrete connection between the worldline formulation

of supergravity and the worldsheet model could lead to a quantitative proof of these ideas.

Along these lines, it is interesting to note a sort of ‘conservation of difficulty’ in eval-

uating amplitude expressions, even at four points. In the worldsheet model, the correlator

is easy to compute, boiling down to nothing more than zero mode counting and, for genus

greater than two, non-trivial OPEs between worldsheet fields (as in the superstring [11]).

However, the integrand is then localized on the support of the genus g scattering equa-

tions, which fix the moduli in terms of the kinematic data and loop momenta via elliptic

functions. Consequently, solving these equations analytically or numerically for general

kinematics seems prohibitively difficult. By contrast, there are no scattering equations to

solve in the worldline formalism, but a sum over skeleton graphs with increasingly var-

ied topology for g > 2 must be performed explicitly. It seems that one trades this sum

over graphs for localization onto the scattering equations by moving from the worldline to

worldsheet descriptions of perturbative supergravity.

A similar phenomenon also exists upon comparison with another prescription which has

been developed for the computation of field theory loop integrands based on the pure spinor

formalism [50–53]. This method exploits the underlying superstring origin of field theory

amplitudes to construct BRST-invariant integrands using multiparticle superfields derived
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from OPE computations in the pure spinor formalism. The expected gauge anomaly for

higher-point amplitudes is accounted for by pseudo-BRST invariants constructed in [54].

These multiparticle building blocks are then fused together to build amplitudes from triva-

lent graphs. This program has now been explicitly realized at tree-level (for the am-

plitude) [27, 50] and one-loop (for the integrand) [52], and aims to provide a mapping

between trivalent graphs and multiparticle superfields at any level in perturbation theory.

If our conjecture is true, then the integrands M
(g)
n computed by the worldsheet model

should be equal to those arising from the BRST cohomology approach. However, this would

entail trading localization onto the support of the scattering equations (a process which

seems very difficult beyond tree-level and a low number of external states) for the sum over

trivalent graphs expressed in terms of multiparticle superfields (which produces analytic

and manifestly supersymmetric answers). At tree-level, the translation to trivalent graphs

is implied by the scattering equations and the correlator structure [2, 13]; any understanding

of how this relationship could be realized at higher loops would be very interesting.

Finally, we note that a heterotic version of the minimal model was also presented in [12],

with vertex operators coupled to the worldsheet current algebra giving the superfields of

N = 1 super-Yang-Mills in ten-dimensions. The sphere correlation functions of these vertex

operators were shown to give the correct tree-level S-matrix for SYM in d = 10. However,

this model also contains gravitational vertex operators, which do not produce the scattering

amplitudes of N = 1 supergravity. Hence, higher-genus amplitudes in the heterotic model

will be contaminated by these unphysical states running in the loop. A similar issue

exists for the RNS-like formulation of this heterotic model [4] where the problem can also

be understood from the absence of an anomaly cancellation mechanism under target space

diffeomorphisms [5]. Insight into how to formulate these worldsheet theories for Yang-Mills

degrees of freedom alone or coupled to Einstein (super)gravity would enable the study of

higher-genus worldsheet descriptions of gauge theory amplitudes as well.
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A Worldsheet currents and OPEs

For convenience, we list here the various composite currents appearing in the non-minimal

formalism discussed in this paper, and their various OPEs with each other. We only

list these for the un-tilded variables, as the currents and OPEs for the tilded sector are

identical. Note that the only difference between the list here and that for the superstring

is the definition of the Green-Schwarz current dα (cf., [10]).
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The pure spinor conditions on minimal and non-minimal variables imply a gauge in-

variance, meaning that the conformal weight (1, 0) pure spinor fields can only appear in

the currents:

Nnm =
1

2
(wγnmλ) , J = λ · w , Tλ = −wα ∂λα ,

N̄nm =
1

2

(
w̄γnmλ̄+ sγnmr

)
, J̄ = w̄ · λ̄+ s · r , Tλ̄,r = −w̄α∂λ̄α − sα∂rα ,

Smn =
1

2
(sγmnλ̄) , S = s · λ̄ .

The minimal currents have OPEs:

Nnm(z)λα(w) ∼ −1

2

(γnmλ)α

z − w
, J(z)λα(w) ∼ − λα

z − w
, J(z)Nnm(w) ∼ 0 ,

J(z) J(w) ∼ −4

(z − w)2
, Npq(z)Nnm(z) ∼ −3

ηm[pηq]n

(z − w)2
+
ηm[qNp]n − ηn[qNp]m

z − w
,

Nnm(z)Tλ(w) ∼ Nnm(z)

(z − w)2
, J(z)Tλ(w) ∼ 8

(z − w)3
+

J(z)

(z − w)2
,

Tλ(z)Tλ(w) ∼ 11

(z − w)4
+

2Tλ(z)

(z − w)2
+

∂Tλ
z − w

.

The last of these confirms the +22 central charge contribution of the pure spinor variables.

For the non-minimal variables, we have:

N̄nm(z) λ̄α(w) ∼ −1

2

(γnmλ̄)α
z − w

, N̄nm(z) rα(w) ∼ −1

2

(γnmr)α
z − w

, J̄(z) N̄nm(w) ∼ 0 ,

J̄(z) λ̄α(w) ∼ − λ̄α
z − w

, J̄(z) rα(w) ∼ − rα
z − w

, J̄(z) J̄(w) ∼ 0 ,

N̄pq(z) N̄nm(w) ∼ ηm[qN̄p]n−ηn[qN̄p]m

z−w
,

N̄nm(z)Tλ̄,r(w) ∼ N̄nm(z)

(z − w)2
, J̄(z)Tλ̄,r(w) ∼ J̄(z)

(z − w)2
,

Tλ̄,r(z)Tλ̄,r(w) ∼
2Tλ̄,r(z)

(z − w)2
+
∂Tλ̄,r
z − w

.

Any additional OPEs (involving Snm or S) can be read off directly from the superstring

(cf., [14]). Note that the OPE of the stress tensor Tλ̄,r with itself confirms that the non-

minimal variables do not modify the central charge of the model.

Finally, the BRST charge for both the minimal and non-minimal models is built upon

the Green-Schwarz constraint dα (2.5), which is the holomorphic generalization of the

superparticle constraint:

dα = pα −
1

2
Pmγ

m
αβθ

β .

The OPEs of this constraint with the other matter variables are crucial for proving nilpo-

tence of the BRST charge, closure of the vertex operators, as well as deriving the effective

b-ghost (2.20), and can be derived using the free OPEs (2.4):

dα(z) f (X, θ) (w) ∼ Dαf

z − w
, dα(z) dβ(w) ∼ −

Pmγ
m
αβ

z − w
,

where Dα is the supersymmetric derivative.
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B Worldsheet action from a gauge-fixing procedure

The origins of the pure spinor formalism for the superstring are still somewhat shrouded in

mystery, particularly with regards to the emergence of the worldsheet action from a gauge

fixing procedure, as in the RNS formalism for superstring perturbation theory. Recently,

Berkovits showed that the pure spinor superstring can be derived from gauge fixing a

reparametrization-invariant action [18]. The starting point is a worldsheet theory with only

bosonic variables; one then gauges a twistor-like constraint (along with the ten-dimensional

pure spinor λα) to arrive at the pure spinor formalism. Remarkably, all fermionic worldsheet

variables emerge as ghosts in this gauge fixing procedure. While this process still requires

the ‘by hand’ imposition of the pure spinor condition, it does give a derivation of the

superstring action from a first principles argument and also hints at a surprisingly universal

role for twistor-like geometry in superstring theory.

The worldsheet model studied in this paper can also be derived by a very similar

procedure. This also involves gauging a twistor-like constraint on the worldsheet, but in

this context the constraint seems to be stronger, implying both the Virasoro constraint and

the Hamiltonian. We expect this fact to be related to some of the curiosities appearing in

our amplitude prescription; for instance, that the effective b-ghost gives a prescription for

performing the moduli integrals, while being related to the Hamiltonian rather than the

stress tensor.

We begin with a chiral, first-order version of the reparametrization-invariant worldsheet

action from [18]:

S =
1

2π

∫
Σ

det e
(
Pm ∇̄Xm + wα ∇̄λα+w̃α̃ ∇̄λ̃α̃+LαBα+L̃α̃B̃α̃+Λ̄αλ

α+ ˜̄Λα̃λ̃
α̃
)
. (B.1)

Here ∇̄ = eJ+∂J is the covariant derivative with eJ± the zweibein on the worldsheet Σ.

Both λα and λ̃α̃ are pure spinors in ten-dimensions, meaning that they obey the algebraic

condition

λγmλ = 0 = λ̃γmλ̃ ,

and have only eleven independent complex components each. Recall that the space of pure

spinors in ten-dimensions is given by (SO(10)/U(5))× C∗.
The Lagrange multipliers Lα, L̃α̃, Λ̄α, and ˜̄Λα̃ enforce the constraints

Bα = −1

2
Pm γ

m
αβλ

β , B̃α̃ = −1

2
Pm γ

m
α̃β̃
λ̃β̃ , (B.2)

and λα = 0 = λ̃α̃, respectively. The latter will serve to eliminate potential divergences

from the non-compact zero-mode integrations over the pure spinors, while the former are

twistor-like constraints. Note that these twistor constraints are related to those appearing

in the superstring by the replacement Pm ↔ ∂Xm [18]. The pure spinor conditions on λ, λ̃

mean that Λ̄ and ˜̄Λ are also pure.

The constraints {B, B̃, λ, λ̃} and the various pure spinor conditions imply associated

gauge invariances for the action (B.1) which must be fixed. Note that unlike the superstring

studied in [18], the twistor constraints commute (i.e., [Bα, Bβ ] = 0) so their associated
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gauge freedoms are simpler. In particular, the constraint Bα generates a symmetry of the

action (B.1) given by

δXm =
ε

2
(λγmf) , δwα = −ε

2
Pm(γmf)α , δLα = ε ∇̄fα , (B.3)

where fα ∈ ΠΩ0(Σ) is the infinitesimal gauge transformation and ε ∈ ΠΩ0(Σ) is the

associated parameter. The other constraint B̃α̃ induces the obvious analogue of (B.3) on

the tilded variables.

The gauge invariances associated to the pure spinor condition are the same as in the

superstring [18]. For instance, the λα constraint implies the gauge invariance

δwα = ε gα , δΛ̄α = ε

(
∇̄gα +

(gγm∇̄Λ̄) (γmλ)α
2 (λ · Λ̄)

)
, (B.4)

for gα ∈ ΠΩ0(Σ,KΣ). Finally, we have the gauge freedom associated with the pure spinor

constraint on λ and λ̃:

δLα = cmn(γmnλ)α , δL̃α̃ = c̃mn(γmnλ̃)α̃ , (B.5)

with cmn, c̃mn arrays of arbitrary parameters.

At this point, it is worth noting that the constraints in (B.1) actually imply the

two bosonic constraints which are gauged in the RNS-like formalism of this worldsheet

theory [4, 6]. These are the Virasoro and Hamiltonian constraints, implemented by gaug-

ing the worldsheet currents

T = −Pm∇Xm , H = ηmnPm Pn ,

both of which take values in Ω0(Σ,K2
Σ). The latter of these is implied by the twistor

constraints of the pure spinor action, since

H = −Bα
Pn(γnΛ̄)α

λ · Λ̄
.

The Virasoro constraint is more subtle as it is implied only by the twistor constraint in

conjunction with λα. In particular, the stress tensor of (B.1) is given by

T = Bα
∇Xn(γnΛ̄)α

λ · Λ̄
− λαPm∇X

n(γ mn Λ̄)α
2λ · Λ̄

+∇λα (λγmnw)(γmnΛ̄)α + 2(λ · w)Λ̄α
8λ · Λ̄

.

Hence, the twistor constraint Bα seems to be stronger in this ‘infinite tension’ limit than its

superstring analogue, which only implies the Virasoro constraint. This is likely related to

the fact that the effective b-ghost (2.20) in our loop amplitude prescription obeys {Q, b} =

H rather than {Q, b} = T , while nevertheless providing what appears to be the correct

measure for integrating over the moduli space. Of course, a more precise understanding of

this relationship would be desirable.

Since these constraints imply the Virasoro constraint, we are free to move to conformal

gauge on the worldsheet, whereupon the action becomes:

S =
1

2π

∫
Σ
Pm ∂̄X

m + wα ∂̄λ
α + w̃α̃ ∂̄λ̃

α̃ + LαBα + L̃α̃B̃α̃ + Λ̄αλ
α + ˜̄Λα̃λ̃

α̃ . (B.6)
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We now fix the gauge redundancies (B.3)–(B.5) with the usual BRST procedure. In order

to do this, we must work patchwise on the space of pure spinors. Consider the pure spinor

λα; the space of pure spinors has a natural open cover {Uα}, where Uα is open subset of

(SO(10)/U(5))× C∗ with the αth-component of λ is non-zero.

These patches can be specified by a choice of constant pure spinor of the opposite chi-

rality, λ̄α, and demanding that λ̄ ·λ 6= 0. With the manifestly U(5)-covariant description of

spinors in ten (Euclidean) dimensions, under which a spinor decomposes into the (1,10, 5̄)

representations of U(5), the pure spinor constraint is solved as (cf., [8, 14])

λα = (λ+, λij , λ
i) =

(
λ+, λij ,

1

8
εijklmλjkλlm

)
,

where i, j = 1, . . . , 5 are U(5) vector indices. For instance, in the patch U+ on which the

component λ+ 6= 0, one can specifying a pure spinor λ̄α = (λ̄+, 0, 0) for which λ̄ · λ 6= 0.

Now, on a given patch Uβ , we can use (B.5) to fix eleven components of Lα by satisfying

the condition Lγmnλ̄ = 0. This leaves five free components in Lα, which can be gauged to

zero using (B.3), with the transformation function fα constrained by

fγmnλ̄ = 0 . (B.7)

The gauge freedom (B.4) can also be used to set Λ̄α = ελ̄α, for some constant ε 6= 0. This

imposes the constraint

gγmλ̄ = 0 , (B.8)

on the transformation function gα.

Following the usual BRST-procedure to implement these gauge-fixings results in

S − 1

2π

∫
Σ
MαL

α −Nα(Λ̄α − ελ̄α) +mα∂̄f
α + nα∂̄gα

− M̃α̃L̃
α̃ − Ñ α̃

(
˜̄Λα̃ − ε̃˜̄λα̃

)
+ m̃α̃∂̄f̃

α̃ + ñα̃∂̄g̃α̃ ,

where we have now included the tilded fields, with mα, m̃α̃ ∈ ΠΩ0(Σ,KΣ) and nα, ñα̃ ∈
ΠΩ0(Σ) the antighosts for fα, f̃ α̃ and gα, g̃α̃ respectively. The Mα, M̃α̃ ∈ Ω0(Σ,KΣ) and

Nα, Ñ α̃ ∈ Ω0(Σ) are the associated Nakanishi-Lautrup Lagrange multiplier fields. Further-

more, the BRST-operator can easily be calculated from the Noether procedure on (B.6)

using (B.3), (B.4):

Q =

∮
λα gα +Bα f

α + λ̃α̃ g̃α̃ + B̃α̃ f̃
α̃ . (B.9)

The various constraints on the gauge-fixed fields also imply constraints on the anti-ghosts

and Lagrange multipliers:

λγmnm = 0 = λγmnM , λγmn = 0 = λγmN , (B.10)

along with their tilded partners.
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Upon integrating out all Lagrange multipliers in the path integral, we are left with a

gauge-fixed action

S =
1

2π

∫
Σ
Pm ∂̄X

m + wα ∂̄λ
α + w̃α̃ ∂̄λ̃

α̃ +mα∂̄f
α + m̃α̃∂̄f̃

α̃ + nα∂̄gα + ñα̃∂̄g̃α̃

+ ε λ̄ · λ+ ε̃ ˜̄λ · λ̃ . (B.11)

We now follow [18] and define new fermionic fields:

θα ≡ fα + nα , pα ≡ gα +mα , (B.12)

with θ̃α̃ and p̃α̃ defined similarly. While each of {f, n, g,m} are constrained by (B.7), (B.8),

(B.10), it is easy to see that θα, pα are not.

In particular, consider θα. The constraint (B.7) implies that only five of the sixteen

components of fα and are undetermined; the remainder are fixed in terms of λ̄α. Eleven

of the sixteen components of nα are independent due to (B.10), and these are precisely

complimentary to the free components of fα. In terms of the U(5)-decomposition, the

independent components of fα lie in the 5̄ representation, while those of nα are in the 1

and 10 representations. A similar statement obtains for the constituents of pα.

So the new fermionic variables are totally unconstrained, and hence independent of

the choice of patch Uβ in pure spinor space on which we have performed the gauge fixing.

This means that the terms proportional to λ̄, ˜̄λ can be eliminated from the action (B.11)

by sending ε, ε̃→ 0, leaving us with

S =
1

2π

∫
Σ
Pm ∂̄X

m + wα ∂̄λ
α + w̃α̃ ∂̄λ̃

α̃ + pα ∂̄θ
α + p̃α̃ ∂̄θ̃

α̃ , (B.13)

and the BRST-charge

Q =

∮
λα
(
pα −

1

2
Pmγ

m
αβθ

β

)
+ λ̃α̃

(
p̃α̃ −

1

2
Pmγ

m
α̃β̃
θ̃β
)

=

∮
λα dα + λ̃α̃ d̃α̃ . (B.14)

These are precisely the action and BRST-charges of the minimal model [12], given by (2.1),

(2.6). The non-minimal variables can also be obtained from a gauge-fixing, in direct analogy

with the process for the superstring [18].
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[8] N. Berkovits, Super Poincaré covariant quantization of the superstring, JHEP 04 (2000) 018

[hep-th/0001035] [INSPIRE].

[9] N. Berkovits, ICTP lectures on covariant quantization of the superstring, hep-th/0209059

[INSPIRE].

[10] O.A. Bedoya and N. Berkovits, GGI Lectures on the Pure Spinor Formalism of the

Superstring, arXiv:0910.2254 [INSPIRE].

[11] H. Gomez and C.R. Mafra, The closed-string 3-loop amplitude and S-duality, JHEP 10

(2013) 217 [arXiv:1308.6567] [INSPIRE].

[12] N. Berkovits, Infinite Tension Limit of the Pure Spinor Superstring, JHEP 03 (2014) 017

[arXiv:1311.4156] [INSPIRE].

[13] H. Gomez and E.Y. Yuan, N-point tree-level scattering amplitude in the new Berkovits‘

string, JHEP 04 (2014) 046 [arXiv:1312.5485] [INSPIRE].

[14] N. Berkovits, Pure spinor formalism as an N = 2 topological string, JHEP 10 (2005) 089

[hep-th/0509120] [INSPIRE].

[15] N. Berkovits and N. Nekrasov, Multiloop superstring amplitudes from non-minimal pure

spinor formalism, JHEP 12 (2006) 029 [hep-th/0609012] [INSPIRE].

[16] N. Berkovits, Covariant quantization of the superparticle using pure spinors, JHEP 09

(2001) 016 [hep-th/0105050] [INSPIRE].

[17] J. Bjornsson, Multi-loop amplitudes in maximally supersymmetric pure spinor field theory,

JHEP 01 (2011) 002 [arXiv:1009.5906] [INSPIRE].

[18] N. Berkovits, Twistor Origin of the Superstring, JHEP 03 (2015) 122 [arXiv:1409.2510]

[INSPIRE].

[19] N. Berkovits, Multiloop amplitudes and vanishing theorems using the pure spinor formalism

for the superstring, JHEP 09 (2004) 047 [hep-th/0406055] [INSPIRE].

[20] N. Berkovits, Relating the RNS and pure spinor formalisms for the superstring, JHEP 08

(2001) 026 [hep-th/0104247] [INSPIRE].

[21] C.R. Mafra, Four-point one-loop amplitude computation in the pure spinor formalism, JHEP

01 (2006) 075 [hep-th/0512052] [INSPIRE].
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