720 research outputs found

    Investigating the effects of typical rowing strength training practices on strength and power development and 2,000m rowing performance

    Get PDF
    This study aimed to determine the effects of a short-term, strength training intervention, typically undertaken by club-standard rowers, on 2,000 m rowing performance and strength and power development. Twenty-eight male rowers were randomly assigned to intervention or control groups. All participants performed baseline testing involving assessments of muscle soreness, creatine kinase activity (CK), maximal voluntary contraction (leg-extensors) (MVC), static-squat jumps (SSJ), counter-movement jumps (CMJ), maximal rowing power strokes (PS) and a 2,000 m rowing ergometer time-trial (2,000 m) with accompanying respiratory-exchange and electromyography (EMG) analysis. Intervention group participants subsequently performed three identical strength training (ST) sessions, in the space of five days, repeating all assessments 24 h following the final ST. The control group completed the same testing procedure but with no ST. Following ST, the intervention group experienced significant elevations in soreness and CK activity, and decrements in MVC, SSJ, CMJ and PS (p < 0.01). However, 2,000 m rowing performance, pacing strategy and gas exchange were unchanged across trials in either condition. Following ST, significant increases occurred for EMG (p < 0.05), and there were non-significant trends for decreased blood lactate and anaerobic energy liberation (p = 0.063 – 0.086). In summary, club-standard rowers, following an intensive period of strength training, maintained their 2,000 m rowing performance despite suffering symptoms of muscle damage and disruption to muscle function. This disruption likely reflected the presence of acute residual fatigue, potentially in type II muscle fibres as strength and power development were affected

    Identifying new concepts for innovative lighting-based interventions to influence movement and behaviours in train stations

    Get PDF
    The disorderly and disrupted movement of passengers within train stations are key concerns in rail transport, especially where there are increasing numbers of passengers, coupled with often out-dated, adapted station spaces. With careful planning and design, different characteristics of lighting can be employed to address problems relating to the movement and behaviour of passengers in railway environments. This study aims to offer an approach to identifying new concepts for lighting-based interventions, to influence passenger movement behaviours within train stations. Behaviourally-orientated lighting literature was reviewed, providing the knowledge base to inform a series of engagement activities with transport stakeholders and lighting technologists, to understand problematic behaviours and how these might be resolved through targeted lighting design. In combining findings from the literature with insights from rail and transport related industry stakeholders and lighting specialists, a number of potential opportunities for novel applications of lighting have been identified. Six scenarios are developed that illustrate these opportunities for potential lighting-based interventions to influence train passenger movement and behaviour. These scenarios can be used to inform the direction of further research and consideration of how different lighting characteristics can affect rail passenger behaviours

    The MITRE trial protocol: a study to evaluate the microbiome as a biomarker of efficacy and toxicity in cancer patients receiving immune checkpoint inhibitor therapy.

    Get PDF
    BACKGROUND: The gut microbiome is implicated as a marker of response to  immune checkpoint inhibitors (ICI) based on preclinical mouse models and preliminary observations in limited patient series. Furthermore, early studies suggest faecal microbial transfer may have therapeutic potential, converting ICI non-responders into responders. So far, identification of specific responsible bacterial taxa has been inconsistent, which limits future application. The MITRE study will explore and validate a microbiome signature in a larger scale prospective study across several different cancer types. METHODS: Melanoma, renal cancer and non-small cell lung cancer patients who are planned to receive standard immune checkpoint inhibitors are being recruited to the MITRE study. Longitudinal stool samples are collected prior to treatment, then at 6 weeks, 3, 6 and 12 months during treatment, or at disease progression/recurrence (whichever is sooner), as well as after a severe (≥grade 3 CTCAE v5.0) immune-related adverse event. Additionally, whole blood, plasma, buffy coat, RNA and peripheral blood mononuclear cells (PBMCs) is collected at similar time points and will be used for exploratory analyses. Archival tumour tissue, tumour biopsies at progression/relapse, as well as any biopsies from body organs collected after a severe toxicity are collected. The primary outcome measure is the ability of the microbiome signature to predict 1 year progression-free survival (PFS) in patients with advanced disease. Secondary outcomes include microbiome correlations with toxicity and other efficacy end-points. Biosamples will be used to explore immunological and genomic correlates. A sub-study will evaluate both COVID-19 antigen and antibody associations with the microbiome. DISCUSSION: There is an urgent need to identify biomarkers that are predictive of treatment response, resistance and toxicity to immunotherapy. The data generated from this study will both help inform patient selection for these drugs and provide information that may allow therapeutic manipulation of the microbiome to improve future patient outcomes. TRIAL REGISTRATION: NCT04107168 , ClinicalTrials.gov, registered 09/27/2019. Protocol V3.2 (16/04/2021)

    A socio-technical approach to improving retail energy efficiency behaviours

    Get PDF
    In recent years, the UK retail sector has made a significant contribution to societal responses on carbon reduction. We provide a novel and timely examination of environmental sustainability from a systems perspective, exploring how energy-related technologies and strategies are incorporated into organisational life. We use a longitudinal case study approach, looking at behavioural energy efficiency from within one of the UK's leading retailers. Our data covers a two-year period, with qualitative data from a total of 131 participants gathered using phased interviews and focus groups. We introduce an adapted socio-technical framework approach in order to describe an existing organisational behavioural strategy to support retail energy efficiency. Our findings point to crucial socio-technical and goal-setting factors which both impede and/or enable energy efficient behaviours, these include: tensions linked to store level perception of energy management goals; an emphasis on the importance of technology for underpinning change processes; and, the need for feedback and incentives to support the completion of energy-related tasks. We also describe the evolution of a practical operational intervention designed to address issues raised in our findings. Our study provides fresh insights into how sustainable workplace behaviours can be achieved and sustained over time. Secondly, we discuss in detail a set of issues arising from goal conflict in the workplace; these include the development of a practical energy management strategy to facilitate secondary organisational goals through job redesign

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure

    Hundreds of variants clustered in genomic loci and biological pathways affect human height

    Get PDF
    Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.

    Modern meat: the next generation of meat from cells

    Get PDF
    Modern Meat is the first textbook on cultivated meat, with contributions from over 100 experts within the cultivated meat community. The Sections of Modern Meat comprise 5 broad categories of cultivated meat: Context, Impact, Science, Society, and World. The 19 chapters of Modern Meat, spread across these 5 sections, provide detailed entries on cultivated meat. They extensively tour a range of topics including the impact of cultivated meat on humans and animals, the bioprocess of cultivated meat production, how cultivated meat may become a food option in Space and on Mars, and how cultivated meat may impact the economy, culture, and tradition of Asia

    Photochemically produced SO2 in the atmosphere of WASP-39b

    Get PDF
    Photochemistry is a fundamental process of planetary atmospheres that regulates the atmospheric composition and stability1. However, no unambiguous photochemical products have been detected in exoplanet atmospheres so far. Recent observations from the JWST Transiting Exoplanet Community Early Release Science Program2,3 found a spectral absorption feature at 4.05 μm arising from sulfur dioxide (SO2) in the atmosphere of WASP-39b. WASP-39b is a 1.27-Jupiter-radii, Saturn-mass (0.28 MJ) gas giant exoplanet orbiting a Sun-like star with an equilibrium temperature of around 1,100 K (ref. 4). The most plausible way of generating SO2 in such an atmosphere is through photochemical processes5,6. Here we show that the SO2 distribution computed by a suite of photochemical models robustly explains the 4.05-μm spectral feature identified by JWST transmission observations7 with NIRSpec PRISM (2.7σ)8 and G395H (4.5σ)9. SO2 is produced by successive oxidation of sulfur radicals freed when hydrogen sulfide (H2S) is destroyed. The sensitivity of the SO2 feature to the enrichment of the atmosphere by heavy elements (metallicity) suggests that it can be used as a tracer of atmospheric properties, with WASP-39b exhibiting an inferred metallicity of about 10× solar. We further point out that SO2 also shows observable features at ultraviolet and thermal infrared wavelengths not available from the existing observations

    Photochemically-produced SO2_2 in the atmosphere of WASP-39b

    Get PDF
    Photochemistry is a fundamental process of planetary atmospheres that regulates the atmospheric composition and stability. However, no unambiguous photochemical products have been detected in exoplanet atmospheres to date. Recent observations from the JWST Transiting Exoplanet Early Release Science Program found a spectral absorption feature at 4.05 μ\mum arising from SO2_2 in the atmosphere of WASP-39b. WASP-39b is a 1.27-Jupiter-radii, Saturn-mass (0.28 MJ_J) gas giant exoplanet orbiting a Sun-like star with an equilibrium temperature of \sim1100 K. The most plausible way of generating SO2_2 in such an atmosphere is through photochemical processes. Here we show that the SO2_2 distribution computed by a suite of photochemical models robustly explains the 4.05 μ\mum spectral feature identified by JWST transmission observations with NIRSpec PRISM (2.7σ\sigma) and G395H (4.5σ\sigma). SO2_2 is produced by successive oxidation of sulphur radicals freed when hydrogen sulphide (H2_2S) is destroyed. The sensitivity of the SO2_2 feature to the enrichment of the atmosphere by heavy elements (metallicity) suggests that it can be used as a tracer of atmospheric properties, with WASP-39b exhibiting an inferred metallicity of \sim10×\times solar. We further point out that SO2_2 also shows observable features at ultraviolet and thermal infrared wavelengths not available from the existing observations.Comment: 39 pages, 14 figures, accepted to be published in Natur
    corecore